Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2011, Vol. 6 Issue (1): 136-150   https://doi.org/10.1007/s11465-010-0126-6
  RESEARCH ARTICLE 本期目录
Solving topology optimization problems by the Guide-Weight method
Solving topology optimization problems by the Guide-Weight method
Xinjun LIU(), Zhidong LI, Liping WANG, Jinsong WANG
Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
 全文: PDF(541 KB)   HTML
Abstract

Finding a good solution method for topology optimization problems is always paid attention to by the research field because they are subject to the large number of the design variables and to the complexity that occurs because the objective and constraint functions are usually implicit with respect to design variables. Guide-Weight method, proposed first by Chen in 1980s, was effectively and successfully used in antenna structures’ optimization. This paper makes some improvement to it so that it possesses the characteristics of both the optimality criteria methods and the mathematical programming methods. When the Guide-Weight method is applied into topology optimization, it works very well with unified and simple form, wide availability and fast convergence. The algorithm of the Guide-Weight method and the improvement on it are described; two formulations of topology optimization solved by the Guide-Weight method combining with SIMP method are presented; subsequently, three numerical examples are provided, and comparison of the Guide-Weight method with other methods is made.

Key wordsGuide-Weight method    topology optimization    SIMP method
收稿日期: 2010-10-09      出版日期: 2011-03-05
Corresponding Author(s): LIU Xinjun,Email:xinjunliu@mail.tsinghua.edu.cn   
 引用本文:   
. Solving topology optimization problems by the Guide-Weight method[J]. Frontiers of Mechanical Engineering, 2011, 6(1): 136-150.
Xinjun LIU, Zhidong LI, Liping WANG, Jinsong WANG. Solving topology optimization problems by the Guide-Weight method. Front Mech Eng, 2011, 6(1): 136-150.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-010-0126-6
https://academic.hep.com.cn/fme/CN/Y2011/V6/I1/136
Fig.1  
Fig.2  
ParameterValueMeaning
E02.06×1011Young’s module
μ0.3Poisson’s ratio
p3.3penalty factor
α0.5step factor
f0.3weight fraction
ρ0[1,1,...,1]initial values of the design variables
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
ParameterValueMeaning
E02.06×1011Young’s module
μ0.3Poisson’s ratio
p3.4penalty factor
α0.5step factor
ρ0[1,1,...,1]initial values of the design variables
Tab.2  
Fig.8  
Fig.9  
ParameterValueMeaning
E02.06×1011Young’s module
μ0.3Poisson’s ratio
p3.3penalty factor
f0.3weight fraction
η0.4damping coefficient
?0.2move limit
ρ0[1,1,...,1]initial values of the design variables
Tab.3  
Fig.10  
Fig.11  
Fig.12  
1 Bendsoe M P, Kikuchi N. Generating optimal topologies in structural design using homogenization method. Computer Methods in Applied Mechanics and Engineering , 1988, 71(2): 197-224
doi: 10.1016/0045-7825(88)90086-2
2 Grujicic M, Arakere G, Pisu P, Ayalew B, Seyr N, Erdmann M, Holzleitner J. Etc. Application of topology, size and shape optimization methods in polymer metal hybrid structural lightweight engineering. Multidiscipline Modeling in Materials and Structures , 2008, 4(4): 305-330
doi: 10.1163/157361108785963028
3 Bendsoe M P, Sigmund O. Topology Optimization: Theory,Methods and Applications. Springer Berlin, 2003
4 Eschenauer H A, Olhoff N. Topology optimization of continuum structure: a review. Applied Mechanics Reviews , 2001, 54(4): 331-390
doi: 10.1115/1.1388075
5 Sigmund O. Manufacturing tolerant topology optimization. Acta Mechanica Sinica , 2009, 25(2): 227-239
doi: 10.1007/s10409-009-0240-z
6 Xie Y M, Steven G P. A Simple evolutionary procedure for structural optimization. Computers & Structures , 1993, 49(5): 885-896
doi: 10.1016/0045-7949(93)90035-C
7 Bendsoe M P, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics , 1999, 69(9-10): 635-654
doi: 10.1007/s004190050248
8 Rozvany G I N. A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization , 2009, 37(3): 217-237
doi: 10.1007/s00158-007-0217-0
9 Sui Y K, Yang D Q. etc. Uniform ICM theory and method on optimization of structural topology for skeleton and continuum structures. Chinease Journal of Computational Mechanics , 2000, 17(1): 28-33
10 Peng X R, Sui Y K. Topological optimization of continuum structure with static and displacement and frenquency constraints by ICM method. Chinease Journal of Computational Mechanics , 2006, 23(4): 391-396
11 Rozvany G I N, Zhou M. The COC algorithm, part I: cross-section optimization or sizing. Computer Methods in Applied Mechanics and Engineering , 1991, 89(1-3): 281-308
doi: 10.1016/0045-7825(91)90045-8
12 Rozvany G I N, Zhou M. The COC algorithm, part II: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering , 1991, 89(1-3): 309-336
13 Zhou M, Rozvany G I N. DCOC: an optimality criteria method for large systems part I: theory. Structural Optimization , 1992, 5(1-2): 12-25
doi: 10.1007/BF01744690
14 Zhou M, Rozvany G I N. DCOC: an optimality criteria method for large systems part II: algorithm. Structural Optimization , 1992, 6(3): 250-262
15 Schmit L A Jr, Farshi B. Some approximation concepts for structural synthesis. AIAA Journal , 1974, 12(5): 692-699
doi: 10.2514/3.49321
16 Barthelemy JFM, Haftka RT. Approximation concepts for optimum structural design-a review. Structural and Multidisciplinary Optimization, 1993, 5(3)
17 Fleury C. A unified approach to structural weight minimization. Computer Methods in Applied Mechanics and Engineering , 1979, 20(1): 17-38
doi: 10.1016/0045-7825(79)90056-2
18 Chen S, Ye S A. Guide-Weight criterion method for the optimal design of antenna structures. Engineering Optimization , 1986, 10(3): 199-216
doi: 10.1080/03052158608902537
19 Chen S. Some modern design methods of precise and complex structures (In Chinese). Press of Beijing University of Aeronautics and Astronautics, Beijing, 1992
20 Chen S.Analysis, Synthesis and Optimization of Engineering Structural Systems (In Chinese). China Science Culture Publishing House, Hongkong, 2008
21 Beckers M. Topology optimization using a dual method with discrete variables. Structural Optimization , 1999, 17(1): 14-24
doi: 10.1007/BF01197709
22 Jog C S. A dual algorithm for the topology optimization of non-linear elastic structures. International Journal for Numerical Methods in Engineering , 2009, 77(4): 502-517
doi: 10.1002/nme.2422
23 Hammer V B, Olhoff N. Topology optimization of continuum structures subjected to pressure loading. Structural and Multidisciplinary Optimization , 2000, 19(2): 85-92
doi: 10.1007/s001580050088
24 Levy R. Fixed point theory and structural optimization. Engineering Optimization , 1991, 17(4): 251-261
doi: 10.1080/03052159108941074
25 Svanberg K. The method of moving asymptotes-a new method for structural optimization. International Journal for Numerical Methods in Engineering , 1987, 24(2): 359-373
doi: 10.1002/nme.1620240207
26 Bruyneel M, Duysinx P, Fleury C. A family of MMA approximations for structural optimization. Structural and Multidisciplinary Optimization. , 2002, 24(4): 263-276
doi: 10.1007/s00158-002-0238-7
27 Duysinx P. Layout optimization: a mathematical programming approach. Danish Center for Applied Mathematics and Mechanics, DCAMM Report No. 540 (March1997)
28 Chang H. Research of auto-solving Guide-Weight functions and develop of auto-optimization software SOGA1 (In Chinese). University of Guangxi, Guangxi China, 2008
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed