1. Surface Engineering Institute, RWTH Aachen University, 52072 Aachen, Germany; 2. Institute of Plasma Technology and Mathematics, Universit?t der Bundeswehr München, Neubiberg, Germany
Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.
Pfender E. Thermal plasma technology: Where do we stand and where do we go. Plasma Chemistry and Plasma Processing , 1999, 19(1): 1–31 doi: 10.1023/A:1021899731587
2
Fauchais P. Understanding plasma spraying. Journal of Physics. D, Applied Physics , 2004, 37(9): 86–108 doi: 10.1088/0022-3727/37/9/R02
3
Fauchais P, Fukumoto M, Vardelle A, Vardelle M. Knowledge concerning splat formation: An invited review. J Thermal Spray Technol , 2004, 13(3): 337–360 doi: 10.1361/10599630419670
4
Dorier J L, Gindrat M, Hollenstein C, Salito A, Loch M, Barbezat G. Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch. IEEE Transactions on Plasma Science , 2001, 29(3): 494–501 doi: 10.1109/27.928947
5
Dzulko M, Forster G, Landes K D, Zierhut J, Nassenstein K. Plasma torch developments. In: Proc of the International Thermal Spray Conference, Basel, Switzerland, DVS Deutscher Verband für Schwei?en , 2005
6
Fauchais P, Montavon P, Vardelle M, Cedelle J. Developments in direct current plasma spraying. Surface and Coatings Technology , 2006, 201(5): 1908–1921 doi: 10.1016/j.surfcoat.2006.04.033
7
Bobzin K, Ernst F, Richardt K, Sporer D, Fiala P. Tailor-made coatings for turbine applications using the triplex pro 200. In: Proc International Thermal Spray Conference, Maastricht, Netherlands, DVS Deutscher Verband für Schwei?en , 2008
8
Schein J, Richter M, Landes K D, Forster G, Zierhut J, Dzulko M. Tomographic investigation of plasma jets produced by multielectrode plasma torches. J Thermal Spray Technol , 2008, 17(3): 338–343 doi: 10.1007/s11666-008-9186-0
9
Baudry C, Vardelle A, Mariaux G. Numerical modeling of a DC non-transferred plasma torch: Movement of the arc anode attachment and resulting anode erosion. High Tech Plasma Proc , 2005, 9(1): 1–15
10
Trelles J P, Chazelas C, Vardelle A, Heberlein J V R. Arc Plasma Torch Modeling. J Thermal Spray Technol , 2009, 18(5-6): 728–752 doi: 10.1007/s11666-009-9342-1
11
Felix A, Muggli F, Molz R J, McCullough R, Hawley D.Improvement of plasma gun performance using comprehensive fluid element modelling: Part I. J Thermal Spray Technol , 2007, 16(5-6): 677–683
12
Molz R, McCullough R, Hawley D, Muggli F. Improvement of plasma gun performance using comprehensive fluid element modelling: Part II. J Thermal Spray Technol , 2007, 16(5-6): 684–689 doi: 10.1007/s11666-007-9100-1
13
Speckhofer G. Der magnetisch ausgelenkte Argonhochdruck-lichtbogen: Experimentelle untersuchungen and 3D-Modellierung. Dissertation for the Doctoral Degree, TU München , 1995: 27–29 (in German)
14
Murphy A B, Arundelli C J. Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chemistry and Plasma Processing , 1994, 14(4): 451–490 doi: 10.1007/BF01570207
15
Marqués J L, Forster G, Schein J. Multi-electrode plasma torches: Motivation for development and current state-of-the-art. Open Plasma Phys J , 2009, 2(2): 89–98 doi: 10.2174/1876534300902020089
16
Boulos M, Fauchais P, Pfender E. Thermal Plasmas. New York: Plenum Press, 1994