Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2011, Vol. 6 Issue (3): 324-331   https://doi.org/10.1007/s11465-011-0125-2
  RESEARCH ARTICLE 本期目录
Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying
Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying
Kirsten BOBZIN1, Nazlim BAGCIVAN1, Lidong ZHAO1, Ivica PETKOVIC1(), Jochen SCHEIN2, Karsten HARTZ-BEHREND2, Stefan KIRNER2, José-Luis MARQUéS2, Günter FORSTER2
1. Surface Engineering Institute, RWTH Aachen University, 52072 Aachen, Germany; 2. Institute of Plasma Technology and Mathematics, Universit?t der Bundeswehr München, Neubiberg, Germany
 全文: PDF(308 KB)   HTML
Abstract

Usage of a multiple-arcs system has significantly improved process stability and coating properties in air plasma spraying. However, there are still demands on understanding and controlling the physical process to determine process conditions for reproducible coating quality and homogeneity of coating microstructure. The main goal of this work is the application of numerical simulation for the prediction of the temperature profiles at the torch outlet for real process conditions. Behaviour of the gas flow and electric arcs were described in a three-dimensional numerical model. The calculated results showed the characteristic triangular temperature distribution at the torch nozzle outlet caused by three electric arcs. These results were compared with experimentally determined temperature distributions, which were obtained with specially developed computed tomography equipment for reconstructing the emissivity and temperature distribution of the plasma jet close to the torch exit. The calculated results related to temperature values and contours were verified for the most process parameters with experimental ones.

Key wordsplasma spraying    electric arc    three-cathode plasma torch    numerical simulation    computed tomography
收稿日期: 2010-08-26      出版日期: 2011-09-05
Corresponding Author(s): PETKOVIC Ivica,Email:petkovic@iot.rwth-aachen.de   
 引用本文:   
. Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying[J]. Frontiers of Mechanical Engineering, 2011, 6(3): 324-331.
Kirsten BOBZIN, Nazlim BAGCIVAN, Lidong ZHAO, Ivica PETKOVIC, Jochen SCHEIN, Karsten HARTZ-BEHREND, Stefan KIRNER, José-Luis MARQUéS, Günter FORSTER. Modelling and diagnostics of multiple cathodes plasma torch system for plasma spraying. Front Mech Eng, 2011, 6(3): 324-331.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-011-0125-2
https://academic.hep.com.cn/fme/CN/Y2011/V6/I3/324
1 Pfender E. Thermal plasma technology: Where do we stand and where do we go. Plasma Chemistry and Plasma Processing , 1999, 19(1): 1–31
doi: 10.1023/A:1021899731587
2 Fauchais P. Understanding plasma spraying. Journal of Physics. D, Applied Physics , 2004, 37(9): 86–108
doi: 10.1088/0022-3727/37/9/R02
3 Fauchais P, Fukumoto M, Vardelle A, Vardelle M. Knowledge concerning splat formation: An invited review. J Thermal Spray Technol , 2004, 13(3): 337–360
doi: 10.1361/10599630419670
4 Dorier J L, Gindrat M, Hollenstein C, Salito A, Loch M, Barbezat G. Time-resolved imaging of anodic arc root behavior during fluctuations of a DC plasma spraying torch. IEEE Transactions on Plasma Science , 2001, 29(3): 494–501
doi: 10.1109/27.928947
5 Dzulko M, Forster G, Landes K D, Zierhut J, Nassenstein K. Plasma torch developments. In: Proc of the International Thermal Spray Conference, Basel, Switzerland, DVS Deutscher Verband für Schwei?en , 2005
6 Fauchais P, Montavon P, Vardelle M, Cedelle J. Developments in direct current plasma spraying. Surface and Coatings Technology , 2006, 201(5): 1908–1921
doi: 10.1016/j.surfcoat.2006.04.033
7 Bobzin K, Ernst F, Richardt K, Sporer D, Fiala P. Tailor-made coatings for turbine applications using the triplex pro 200. In: Proc International Thermal Spray Conference, Maastricht, Netherlands, DVS Deutscher Verband für Schwei?en , 2008
8 Schein J, Richter M, Landes K D, Forster G, Zierhut J, Dzulko M. Tomographic investigation of plasma jets produced by multielectrode plasma torches. J Thermal Spray Technol , 2008, 17(3): 338–343
doi: 10.1007/s11666-008-9186-0
9 Baudry C, Vardelle A, Mariaux G. Numerical modeling of a DC non-transferred plasma torch: Movement of the arc anode attachment and resulting anode erosion. High Tech Plasma Proc , 2005, 9(1): 1–15
10 Trelles J P, Chazelas C, Vardelle A, Heberlein J V R. Arc Plasma Torch Modeling. J Thermal Spray Technol , 2009, 18(5-6): 728–752
doi: 10.1007/s11666-009-9342-1
11 Felix A, Muggli F, Molz R J, McCullough R, Hawley D.Improvement of plasma gun performance using comprehensive fluid element modelling: Part I. J Thermal Spray Technol , 2007, 16(5-6): 677–683
12 Molz R, McCullough R, Hawley D, Muggli F. Improvement of plasma gun performance using comprehensive fluid element modelling: Part II. J Thermal Spray Technol , 2007, 16(5-6): 684–689
doi: 10.1007/s11666-007-9100-1
13 Speckhofer G. Der magnetisch ausgelenkte Argonhochdruck-lichtbogen: Experimentelle untersuchungen and 3D-Modellierung. Dissertation for the Doctoral Degree, TU München , 1995: 27–29 (in German)
14 Murphy A B, Arundelli C J. Transport coefficients of argon, nitrogen, oxygen, argon-nitrogen, and argon-oxygen plasmas. Plasma Chemistry and Plasma Processing , 1994, 14(4): 451–490
doi: 10.1007/BF01570207
15 Marqués J L, Forster G, Schein J. Multi-electrode plasma torches: Motivation for development and current state-of-the-art. Open Plasma Phys J , 2009, 2(2): 89–98
doi: 10.2174/1876534300902020089
16 Boulos M, Fauchais P, Pfender E. Thermal Plasmas. New York: Plenum Press, 1994
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed