Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2011, Vol. 6 Issue (1): 118-135   https://doi.org/10.1007/s11465-011-0127-0
  RESEARCH ARTICLE 本期目录
Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions
Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions
Xiancheng ZHANG1,2(), Fuzhen XUAN1, Shantung TU1, Binshi XU2, Yixiong WU2
1. Key Laboratory of Safety Science of Pressurized System, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; 2. Shanghai Key Lab of Materials Laser Processing and Modification, Shanghai Jiao Tong University, Shanghai 200030, China
 全文: PDF(1980 KB)   HTML
Abstract

The aim of this paper was to address the rolling contact fatigue (RCF) failure mechanisms of plasma-sprayed Cr3C2-NiCr coatings under different tribological conditions of contact stress. Weibull distribution plots of fatigue lives of the coated specimens at different contact stresses were obtained. The failure modes of coatings were identified on the basis of wore surface observations of the failed coatings. Results showed that the RCF failure modes can be classified into four main categories, i.e., surface abrasion, spalling, cohesive delamination, and interfacial delamination. The probabilities of the surface abrasion and spalling type failures were relatively high at low contact stress. When the coatings were subjected to abrasion and spalling type failures, the failure of the coating was depended on the microstrcture of the coating. The stress concentration near the micro-defects in the coating may be the may reason for the formation of spall. The coatings were prone to fail in delamination under higher contact stresses. However, the delamination of coating may be related to distribution of shear stress amplitude within coating. The location of maximum shear stress amplitude can be used as a key parameter to predict the initiation of subsurface cracks within coating in rolling contact.

Key wordsrolling contact fatigue    coating    Weibull distribution    failure mode    mechanism
收稿日期: 2010-10-10      出版日期: 2011-03-05
Corresponding Author(s): ZHANG Xiancheng,Email:xczhang@ecust.edu.cn   
 引用本文:   
. Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions[J]. Frontiers of Mechanical Engineering, 2011, 6(1): 118-135.
Xiancheng ZHANG, Fuzhen XUAN, Shantung TU, Binshi XU, Yixiong WU. Durability of plasma-sprayed Cr3C2-NiCr coatings under rolling contact conditions. Front Mech Eng, 2011, 6(1): 118-135.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-011-0127-0
https://academic.hep.com.cn/fme/CN/Y2011/V6/I1/118
ProcessCoating materialsThickness/μmHardness/HVContact stress/MPaRCF lifeRef.
HVOFWC-12%Co,WC-17%Co, WC-10%Co-4%Cr100758–1208420, 510, 62010 million cycles[1]
WC-12%Co50–22512962700–37000.05–68.5 million cycles[7]
WC-20%Cr-7%Ni39–95703–9641000–14000.07–20 million cycles[8]
WC-Co50,1509402400–30001–328 min[9]
WC-12%Co20,150,25013181700–190018–7260 min[10]
WC-20%Cr-7%Ni50–113744–817600, 800,14000.025–20 million cycles[11]
APSWC-12%Co100888420, 510, 62010 million cycles[1]
WC-15%Co501200N/A10–350 min[4]
WC-15%Co60–26011582740, 31000.058–38.61 million cycles[12]
Cr3C2-25%NiCr50,100,210438–6221300,1500, 20340.01–8.775 million cycles[13]
WC-15%Co60–260N/A2740, 31006–4290 min[14]
Ni-Cr-B-Si-C200.45N/A15003–6 million cycles[15]
WC-15%Co, Al2O3701200580010–180 min[16]
Al2O3, TiO2, Mo, Cr2O3-SiO2-TiO2300–350491–1089822–1086<10 million cycles[17]
D-GunWC-15%Co501200N/A10–350 min[4]
Cr3C2-25%NiCr50,100,2108891300, 20340.094–3.642 million cycles[13]
WC-15%Co, Al2O3701200580010–180 min[16]
Tab.1  
Argon gas flow rate60 L/min
Hydrogen gas flow rate3.33 L/min
Nitrogen gas flow rate10 L/min
Spraying voltage140 V
Spraying current360 A
Powder feed rate30 g/min
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Contact stress (GPa)Modulus, β N10 (×106 cycles)N50 (×106 cycles)Na(×106 cycles)N90 (×106 cycles)Na 90% Confidence band (×106 cycles)Na 95% Confidence band (-106 cycles)
LowerHigherLowerHigher
1.5072.110.75761.84752.19733.26061.84022.62381.75002.7591
1.8981.670.44921.38411.72292.83551.37572.15771.29072.2998
2.3912.100.33670.92241.2221.75330.91871.37080.86811.4508
12.66
2.8821.980.15480.40820.49290.75710.40700.59690.38550.6301
6.48
Tab.3  
Fig.5  
Fig.6  
CodeRCF life (cycles)Failure modeCodeRCF life (cycles)Failure mode
A10.458×106ID1B10.372×106ID
A20.733×106DWC2B20.642×106DWC
A31.192×106DWCB30.733×106SP
A41.283×106DWCB40.789×106DWC
A51.375×106DWCB50.825×106SP
A61.467×106DWCB61.008×106ID
A71.925×106SA3B71.162×106SP
A82.108×106DWCB81.283×106SP
A92.292×106SP4B91.833×106SP
A102.383×106SAB102.118×106DWC
A112.750×106SPB112.292×106SP
A123.208×106DWCB123.232×106SP
A134.075×106SAB133.575×106SP
Tab.4  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
CodeRCF life (cycles)Failure modeCodeRCF life (cycles)Failure mode
C10.245×106IDD10.082×106ID
C20.276×106IDD20.092×106ID
C30.367×106IDD30.183×106ID
C40.463×106DWCD40.217×106ID
C50.668×106IDD50.367×106DWC
C60.733×106IDD60.382×106ID
C70.917×106SPD70.495×106SP
C81.192×106IDD80.513×106ID
C91.451×106DWCD90.550×106SP
C101.515×106SPD100.629×106SP
C111.623×106SPD110.660×106SP
C121.650×106SPD120.733×106SP
C131.833×106SPD130.798×106SP
Tab.5  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
1 Nieminen R, Vuoristo P, Niemi K, M?ntyl? T, Barbezat G. Rolling contact fatigue failure mechanisms in plasma and HVOF sprayed WC-Co coatings. Wear , 1997, 212(1): 66–77
doi: 10.1016/S0043-1648(97)00138-5
2 Miller G R, Keer L M, Cheng H S. On the mechanics of fatigue crack growth due to contact loading. P Roy Soc Lond: Mat , 1813, 1985(397): 197–209
3 Rosado L, Jain V K, Trived H K. The effect of diamond-like carbon coatings on the rolling fatigue and wear of M50 steel. Wear , 1997, 212(1): 1–6
doi: 10.1016/S0043-1648(97)00147-6
4 Ahmed R, Hadfield M. Rolling contact fatigue behaviour of thermally sprayed rolling elements. Surface and Coatings Technology , 1996, 82(1–2): 176–186
doi: 10.1016/0257-8972(95)02736-X
5 Stewart S, Ahmed R. Contact fatigue failure modes in hot isostatically pressed WC-12%Co coatings. Surface and Coatings Technology , 2003, 172(2–3): 204–216
doi: 10.1016/S0257-8972(03)00390-6
6 Makela A, Vuroisto P, Lahdensuo M, Niemi K, Mantyla T. Rolling contact fatigue testing of thermally sprayed coatings. International Journal of Fatigue , 1995, 17: 305
7 Ahmed R. Contact fatigue failure modes of HVOF coatings. Wear , 2003, 253(3–4): 473–487
8 Nakajima A, Mawatari T, Yoshida M, Tani K, Nakahira A. Effects of coating thickness and slip ratio on durability of thermally sprayed WC cermet coating in rolling/sliding contact. Wear , 2000, 241(2): 166–173
doi: 10.1016/S0043-1648(00)00371-9
9 Ahmed R, Hadfield M. Experimental measurement of the residual stress field within thermally sprayed rolling elements. Wear , 1997, 209(1–2): 84–95
doi: 10.1016/S0043-1648(97)00009-4
10 Ahmed R, Hadfield M. Wear of high-velocity oxy-fuel (HVOF)-coated cones in rolling contact. Wear , 1997, 203–204: 98–106
doi: 10.1016/S0043-1648(96)07349-8
11 Nuruzzaman D M, Nakajima A, Mawatari T. Effects of substrate surface finish and substrate material on durability of thermally sprayed WC cermet coating in rolling with sliding contact. Tribology International , 2006, 39(7): 678–685
doi: 10.1016/j.triboint.2005.06.003
12 Ahmed R, Hadfield M. Failure modes of plasma sprayed WC-15%Co coated rolling elements. Wear , 1999, 230(1): 39–55
doi: 10.1016/S0043-1648(99)00083-6
13 Shen X Y, Yu S Y. Performance in resistance to surface fatigue for Cr3C2-25%NiCr coatings by plasma spray and CDS spray. Tribology Letters , 2004, 16(3): 173–180
doi: 10.1023/B:TRIL.0000009727.91545.49
14 Ahmed R, Hadfield M. Rolling contact fatigue performance of plasma sprayed coatings. Wear , 1998, 220(1): 80–91
doi: 10.1016/S0043-1648(98)00224-5
15 Sarma B Y, Mayuram M M. Some studies on life prediction of thermal sprayed coatings under rolling contact conditions. ASME J Tribol , 2000, 122(3): 503–510
doi: 10.1115/1.555393
16 Ahmed R, Hadfield M. Rolling contact fatigue performance of detonation gun coated elements. Tribology International , 1997, 30(2): 129–137
doi: 10.1016/0301-679X(96)00036-9
17 Tobe S, Kodama S, Misawa H. Rolling contact behaviour of plasma sprayed coating on aluminium alloy. In: Proc Nat Thermal Spray Conf. Tokyo, Japan, ASM international, Anaheim, CA , 1990: 171–178
18 Berger L M, Vuoristo P, Mantyla T, Gruner W. Study of oxidation behavior of WC-Co, Cr3C2-NiCr and Tic-Ni-based materials in thermal spray processes. In: Coddet C, eds. Proceedings of the 15th International Thermal Spray Conference. Nice, France , 1998: 75–82
19 Hertz H. überdie Berührung fester elastischer K?rper. J Reine Angew Math , 1881, 92: 156–171
20 Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1992
21 Shimizu S. P-S-N/P-F-L curve approach using three-parameter Weibull distribution for life and fatigue analysis of structural and rolling contact components. Tribol Trans , 2005, 48(4): 576–582
doi: 10.1080/05698190500313536
22 Robert B A, Breneman J E, Medlin C H, Reinman G L. Weibull analysis handbook, US Air Force AFWAL-TR-83–2079, prepared for the Aero Propulsion and Power Laboratory, Wright-Patterson AFB, Ohio, 1983
23 Kuroda S, Clyne T W. Quenching stress in thermally sprayed coatings. Thin Solid Films , 1991, 200(1): 49–66
doi: 10.1016/0040-6090(91)90029-W
24 Kato K, Hokkirigawa K. Abrasive wear diagram. In: Proceedings of the Eurotrib’85. Amsterdam: Elsevier, 1985: 9–12
25 Holmberg K, Matthews A, Ronkainen H. Coatings tribology-contact mechanisms and surface design. Tribology International , 1998, 31(1–3): 107–120
doi: 10.1016/S0301-679X(98)00013-9
26 Tallian T. Failure Atlas for Hertz Contact Machine Elements. New York: ASME Press, 1992
27 Stewart S, Ahmed R, Itsukaichi T. Rolling contact fatigue of post-treated WC- NiCrBSi thermal spray coatings. Surface and Coatings Technology , 2005, 190(2–3): 171–189
doi: 10.1016/j.surfcoat.2004.04.059
28 Liang G Y, Su J Y. The microstructure and tribological characteristics of laser-clad Ni-Cr-Al coatings on aluminium alloy. Materials Science and Engineering , 2000, A290: 207–212
29 Miyashita Y, Yoshimura Y, Xu J Q, Horikoshi M, Mutoh Y. Subsurface crack propagation in rolling contact fatigue of sintered alloy. JSME International Journal , 2003, 46(3): 341–347
doi: 10.1299/jsmea.46.341
30 Lundberg G, Palmgren A. Dynamic capacity of rolling bearings. Acta Polytechnica-Mech. Eng Series , 1947, 1: 4–51
31 Fellows L, Nowell D, Hills D. On the initiation of fretting fatigue cracks. Wear , 1997, 205(1–2): 120–129
doi: 10.1016/S0043-1648(96)07302-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed