Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2011, Vol. 6 Issue (3): 344-353   https://doi.org/10.1007/s11465-011-0227-x
  RESEARCH ARTICLE 本期目录
Structural optimization of typical rigid links in a parallel kinematic machine
Structural optimization of typical rigid links in a parallel kinematic machine
Xinjun LIU(), Zhidong LI, Xiang CHEN
State Key Laboratory of Tribology & Institute of Manufacturing Engineering, Department of Precision Instruments and Mechanology, Tsinghua University, Beijing 100084, China
 全文: PDF(323 KB)   HTML
Abstract

The motion dynamics and accuracy of parallel kinematic machines largely depend on the weights and rigidity of typical rigid links. Therefore, these parts should be designed in such a way that they are light but rigid. This work employs the techniques of topology and size optimization to design two typical rigid links of a parallel kinematic machine (PKM) and subsequently obtains applicable structures for them. The calculation models are established, and a new algorithm called the Guide-Weight method is introduced to solve topology optimization problems. The commercial software Ansys is used to perform size optimization.

Key wordstopology optimization    size optimization    parallel kinematic machine (PKM)
收稿日期: 2011-03-23      出版日期: 2011-09-05
Corresponding Author(s): LIU Xinjun,Email:xinjunliu@mail.tsinghua.edu.cn   
 引用本文:   
. Structural optimization of typical rigid links in a parallel kinematic machine[J]. Frontiers of Mechanical Engineering, 2011, 6(3): 344-353.
Xinjun LIU, Zhidong LI, Xiang CHEN. Structural optimization of typical rigid links in a parallel kinematic machine. Front Mech Eng, 2011, 6(3): 344-353.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-011-0227-x
https://academic.hep.com.cn/fme/CN/Y2011/V6/I3/344
Fig.1  
Fig.2  
Fig.3  
Fig.4  
ParameterValueMeaning
E02.06×1011Young’s modulus of steel/Pa
μ0.3Poisson’s ratio of steel
L640Length of the design domain/mm
W240Width of the design domain/mm
H160Height of the design domain/mm
T15000Side force of load case 1/N
T25000Side force of load case 2/N
Tt10000Tension force/N
p3Penalty factor
α0.5Step factor
f0.3Weight fraction
ρ0[1,1,...,1]Initial values of the design variables
?0.01Positive value of convergent condition
Tab.1  
ParameterValueMeaning
E02.06×1011Young’s modulus of the material
μ0.3Poisson’s ratio of the material
L640Length of the design domain/mm
W200Width of the design domain/mm
H140Height of the design domain/mm
T15000Torque of load case 1/(N·m)
T25000Torque of load case 2/(N·m)
Tt10000Tension force/N
θ37 and 0Anger between T1 and Tt/(o)
p3.0Penalty factor
a0.5Step factor
f0.3Weight fraction
ρ0[1,1,...,1]Initial values of the design variables
?0.01Positive value of convergent condition
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Initial valuesOptimal valuesLower boundUpper bound
L1640.0
W1160.0
H1240.0
C1100.0
C260.0
C380.0
L2400.0396.5350.0450.0
L3200.0200.0180.0220.0
L4300.0299.5280.0320.0
L550.047.730.080.0
L650.047.730.080.0
W280.074.460.0100.0
W380.074.350.0100.0
H250.030.230.070.0
H3150.0149.2120.0160.0
H450.048.640.080.0
D12×arctanH1/2-H2L1-L2
Tab.3  
Fig.14  
Fig.15  
Initial valuesOptimal valuesLower boundUpper bound
L1640.0
W1200.0
H1140.0
C160.0
H280.0119.740.0120.0
W2140.0174.0100.0180.0
Tab.4  
Fig.16  
Fig.17  
Fig.18  
1 Fassi I, Wiens G J. Multiaxis machining: PKMs and traditional machining centers. Journal of Manufacturing Processes , 2000, 2(1): 1–14
doi: 10.1016/S1526-6125(00)70008-9
2 Weck M, Staimer D. Parallel kinematic machines-current state and future potentials. CIRP Annals- Manufacturing Technology , 2002, 51(2): 671–683
3 Bonnemains T, Chanal H, Bouzgarrou B, Ray P. Stiffness computation and identification of parallel kinematic machine tools. Journal of Manufacturing Science and Engineering , 2009, 131(4): 041013.1–041013.7
4 Li Y, Xu Q. Stiffness analysis for a 3-PUU parallel kinematic machine. Mechanism and Machine Theory , 2008, 43(2): 186–200
doi: 10.1016/j.mechmachtheory.2007.02.002
5 Zhang D, Wang L, Lang S Y T. Parallel kinematic machines: design, analysis and simulation in an integrated virtual environment. Journal of Mechanical Design , 2005, 127(4): 580–588
doi: 10.1115/1.1897745
6 Li Y, Xu Q. Dynamic modeling and robust control of a 3-PRC translational parallel kinematic machine. Robotics and Computer-Integrated Manufacturing , 2009, 25: 630–640
7 Bendsoe M P, Sigmund O. Topology Optimization: Theory, Methods and Applications. Berlin: Springer, 2003
8 Eschenauer H A, Olhoff N. Topology optimization of continuum structure: a review. Applied Mechanics Reviews , 2001, 54(4): 331–390
doi: 10.1115/1.1388075
9 Hull P V, Canfield S. Optimal synthesis of compliant mechanisms using subdivision and commercial FEA. Journal of Mechanical Design , 2006, 128(2): 337–348
doi: 10.1115/1.2159026
10 Wang M Y. Mechanical and geometric advantages in compliant mechanism optimization. Frontiers of Mechanical Engineering in China , 2009, 4(3): 229–241
11 Patel N M, Kang B S, Renaud J E, Tovar A. Crashworthiness design using topology optimization. Journal of Mechanical Design , 2009, 131(6): 061013.1–061013.12
12 Albert A, Jens O.Integrated structural and controller optimization in dynamic mechatronic systems. Journal of Mechanical Design , 2010, 132(4): 041008.1–041008.8
13 Krog L, Tucker A, Rollema G. Application of topology, sizing and shape optimization methods to optimal design of aircraft components. In: Proceedings of the 3rd Altair UK HyperWorks Users Conference , 2002
14 Hassani B, Hinton E. A review of homogenization and topology optimization I: homogenization theory for media and periodic structure. Computers & Structures , 1998, 69(6): 707–717
doi: 10.1016/S0045-7949(98)00131-X
15 Hassani B, Hinton E. A review of homogenization and topology optimization II: analytical and numerical solution of homogenization equations. Computers & Structures , 1998, 69(6): 719–738
doi: 10.1016/S0045-7949(98)00132-1
16 Hassani B, Hinton E. A review of homogenization and topology optimization III: topology optimization using optimality criteria. Computers & Structures , 1998, 69(6): 739–756
doi: 10.1016/S0045-7949(98)00133-3
17 Bends?e M P, Sigmund O. Material interpolation schemes in topology optimization. Archive of Applied Mechanics , 1999, 69(9–10): 635–654
doi: 10.1007/s004190050248
18 Rozvany G I N. A critical review of established methods of structural topology optimization. Structural and Multidisciplinary Optimization , 2009, 37(3): 217–237
doi: 10.1007/s00158-007-0217-0
19 Rozvany G I N, Zhou M. The COC algorithm, part I: cross-section optimization or sizing. Computer Methods in Applied Mechanics and Engineering , 1991, 89(1–3): 281–308
doi: 10.1016/0045-7825(91)90045-8
20 Rozvany G I N, Zhou M. The COC algorithm, part II: topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering , 1991, 89(1–3): 309–336
21 Zhou M, Rozvany G I N. DCOC: an optimality criteria method for large systems part I: theory. Structural Optimization , 1992, 5(1): 12–25
doi: 10.1007/BF01744690
22 Zhou M, Rozvany G I N. DCOC: An optimality criteria method for large systems part II: Algorithm. Structural Optimization , 1992, 6(3): 250–262
23 Bruyneel M, Duysinx P, Fleury C. A family of MMA approximations for structural optimization. Structural and Multidisciplinary Optimization , 2002, 24(4): 263–276
doi: 10.1007/s00158-002-0238-7
24 Zhou M, Pagaldipti N, Thomas H L, Shyy Y K. An integrated approach to topology, sizing, and shape optimization. Structural and Multidisciplinary Optimization , 2004, 26(5): 308–317
doi: 10.1007/s00158-003-0351-2
25 Chen S, Ye S A. Guide-Weight criterion method for the optimal design of antenna structures. Engineering Optimization , 1986, 10(3): 199–216
doi: 10.1080/03052158608902537
26 Chen S. Analysis, synthesis and optimization of engineering structural systems. Hongkong: China Science Culture Publishing House, 2008
27 Chen S, Torterelli D A. Three-dimensional shape optimization with variational geometry. Structural Optimization , 1997, 13(2–3): 81–94
doi: 10.1007/BF01199226
28 Hetrick J A, Kota S. An energy formulation for parametric size and shape optimization of compliant mechanisms. Journal of Mechanical Design , 1999, 121(2): 229–234
doi: 10.1115/1.2829448
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed