Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2012, Vol. 7 Issue (1): 47-54   https://doi.org/10.1007/s11465-012-0307-6
  RESEARCH ARTICLE 本期目录
Identification of thermal error in a feed system based on multi-class LS-SVM
Identification of thermal error in a feed system based on multi-class LS-SVM
Chao JIN, Bo WU(), Youmin HU, Yao CHENG
State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(464 KB)   HTML
Abstract

Research of thermal characteristics has been a key issue in the development of high-speed feed system. The thermal positioning error of a ball-screw is one of the most important objects to consider for high-accuracy and high-speed machine tools. The research work undertaken herein ultimately aims at the development of a comprehensive thermal error identification model with high accuracy and robust. Using multi-class least squares support vector machines (LS-SVM), the thermal positioning error of the feed system is identified with the variance and mean square value of the temperatures of supporting bearings and screw-nut as feature vector. A series of experiments were carried out on a self-made quasi high-speed feed system experimental bench HUST-FS-001 to verify the identification capacity of the presented method. The results show that the recommended model can be used to predict the thermal error of a feed system with good accuracy, which is better than the ordinary BP and RBF neural network. The work described in this paper lays a solid foundation of thermal error prediction and compensation in a feed system.

Key wordsleast squares support vector machine (LS-SVM)    feed system    thermal error    precision machining
收稿日期: 2011-09-10      出版日期: 2012-03-05
Corresponding Author(s): WU Bo,Email:bowu@mail.hust.edu.cn   
 引用本文:   
. Identification of thermal error in a feed system based on multi-class LS-SVM[J]. Frontiers of Mechanical Engineering, 2012, 7(1): 47-54.
Chao JIN, Bo WU, Youmin HU, Yao CHENG. Identification of thermal error in a feed system based on multi-class LS-SVM. Front Mech Eng, 2012, 7(1): 47-54.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-012-0307-6
https://academic.hep.com.cn/fme/CN/Y2012/V7/I1/47
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Experiment stepFeed speed(m·min-1)Preload of ballscrew/NmAxial force/NCyclesRuntime/min
12050230012026
285025004016
31050300010027
4155030005011
5135030004012
62550260010020
720502600308
Tab.1  
Fig.6  
Fig.7  
Fig.8  
AlgorithmLS-SVMBPRBF
Identification accuracy/%86.6766.6773.33
Tab.2  
1 Ramesh R, Mannan M A, Poo A N. Error compensation in machine tools—a review: Part II: thermal errors. International Journal of Machine Tools & Manufacture , 2000, 40(9): 1257-1284
2 Jedrzejewski J, Modrzycki W. A new approach to modelling thermal behaviour of a machine tool under service conditions. Annals of the CIRP , 1992, 41(1): 455-458
doi: 10.1016/S0007-8506(07)61243-8
3 Erkorkmaz K, Gorniak J M, Gordon D J. Precision machine tool X-Y stage utilizing a planar air bearing arrangement. Annals of CIRP , 2010, 59(1): 425-428
doi: 10.1016/j.cirp.2010.03.086
4 Qi L, Zhang G. Modeling and simulation of the thermal network in a space gear-bearing system. In: Proceedings of 2010 IEEE International Conference on Information and Automation, Harbin , 2010: 201-205
5 Huang S C. Analysis of a model to forecast thermal deformation of ball-screw feed drive systems. International Journal of Machine Tools & Manufacture , 1995, 45(8): 1099-1104
6 Venugopal R, Barash M, Shaw M. Thermal effects on the accuracy of numerically controlled machine tools. Annals of the CIRP , 1986, 35(1): 255-258
doi: 10.1016/S0007-8506(07)61882-4
7 Veldhuis S C, Elbestawi M A. A strategy for the compensation of errors in five-axis machining. Annals of the CIRP , 1995, 44(1): 373-378
doi: 10.1016/S0007-8506(07)62345-2
8 Kim S K, Cho D W. Real-time estimation of temperature distribution in a ball-screw system. International Journal of Machine Tools & Manufacture , 1997, 37(4): 451-464
doi: 10.1016/S0890-6955(96)00036-3
9 Ekici S. Classification of power system disturbances using support vector machines. Expert Systems with Applications , 2009, 36(6): 9859-9868
doi: 10.1016/j.eswa.2009.02.002
10 Baccarini L M R, Rochae Silva V V, de Menezes B R, Caminhas W M. SVM practical industrial application for mechanical faults diagnostic. Expert Systems with Applications , 2011, 38(6): 6980-6984
doi: 10.1016/j.eswa.2010.12.017
11 Teti R, Jemielniak K, O’Donnell G, Dornfeld D. Advanced monitoring of machining operations. CIRP Annals—Manufacturing Technology , 2010, 59(2): 717-739
doi: 10.1016/j.cirp.2010.05.010
12 Krulewich D A. Temperature integration model and measurement point selection for thermally induced machinetool errors. Mechatronics , 1998, 8(4): 395-412
doi: 10.1016/S0957-4158(97)00059-7
13 Lo C H, Yuan J X, Ni J. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation. International Journal of Machine Tools & Manufacture , 1999, 39(9): 1383-1396
14 Suykens J A K, Vandewalle J. Least squares support vector machine classifier. Neural Processing Letters , 1999, 9(3): 293-300
doi: 10.1023/A:1018628609742
15 Fletcher R. Practical Methods of Optimization. Chichester and New York: John Wiley and Sons, 1987
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed