Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2015, Vol. 10 Issue (1): 37-42   https://doi.org/10.1007/s11465-015-0326-1
  本期目录
A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator
Meiju YANG,Chunxia LI,Guoying GU,Limin ZHU()
State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 全文: PDF(726 KB)   HTML
Abstract

In this paper, a novel rate-dependent Prandtl-Ishlinskii (P-I) model is proposed to characterize the rate-dependent hysteresis nonlinearity of piezoelectric actuators. The new model is based on a modified rate-dependent play operator, in which a dynamic envelope function is introduced to replace the input function of the classical play operator. Moreover, a dynamic density function is utilized in the proposed P-I model. The parameters of the proposed model are identified by a modified particle swarm optimization algorithm. Finally, experiments are conducted on a piezo-actuated nanopositioning stage to validate the proposed P-I model under the sinusoidal inputs. The experimental results show that the developed rate-dependent P-I model precisely characterize the rate-dependent hysteresis loops up to 1000 Hz.

Key wordspiezoelectric actuators    hysteresis    Prandtl-Ishlinskii    rate-dependent
收稿日期: 2014-12-28      出版日期: 2015-04-01
Corresponding Author(s): Limin ZHU   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2015, 10(1): 37-42.
Meiju YANG,Chunxia LI,Guoying GU,Limin ZHU. A rate-dependent Prandtl-Ishlinskii model for piezoelectric actuators using the dynamic envelope function based play operator. Front. Mech. Eng., 2015, 10(1): 37-42.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-015-0326-1
https://academic.hep.com.cn/fme/CN/Y2015/V10/I1/37
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Frequency/Hz RMS error
Rate-independent P-I Rate-dependent P-I
10 0.2765 1.3550
100 2.8392 0.6666
200 4.9240 1.1409
300 7.1648 1.4114
400 9.3366 1.8788
500 11.5369 2.4827
600 13.8060 2.7878
700 16.0724 3.6295
800 17.9353 4.2639
900 19.6849 4.2089
1000 21.5029 4.9977
Tab.1  
1 Salapaka S, Salapaka M. Scanning probe microscopy. IEEE Control Systems, 2008, 28(2): 65–83
https://doi.org/10.1109/MCS.2007.914688
2 Leang K, Devasia S. Design of hysteresis-compensating iterative learning control for piezo-positioners: Application to atomic force microscopes. Mechatronics, 2006, 16(3–4): 141–158
https://doi.org/10.1016/j.mechatronics.2005.11.006
3 Qin Y, Shirinzadeh B, Tian Y, Design issues in a decoupled XY stage: Static and dynamics modeling, hysteresis compensation, and tracking control. Sensors and Actuators. A, Physical, 2013, 194: 95–105
https://doi.org/10.1016/j.sna.2013.02.003
4 Gawthrop P, Bhikkaji B, Moheimani S. Physical-model-based control of a piezoelectric tube for nano-scale positioning applications. Mechatronics, 2010, 20(1): 74–84
https://doi.org/10.1016/j.mechatronics.2009.09.006
5 Yang M, Gu G, Zhu L. High-bandwidth tracking control of piezo-actuated nanopositioning stages using closed-loop input shaper. Mechatronics, 2014, 24(6): 724–733
https://doi.org/10.1016/j.mechatronics.2014.02.014
6 Iamail M, Ikhouane F, Rodellar J. The hysteresis Bouc-Wen model, a survey. Archives of Computational Methods in Engineering, 2009, 16(2): 161–188
https://doi.org/10.1007/s11831-009-9031-8
7 Xu Q, Li Y. Dahl model-based hysteresis compensation and precise positioning control of an XY parallel micromanipulator with piezoelectric actuation. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(4): 041011
https://doi.org/10.1115/1.4001712
8 Hu H, Ben Mrad R. On the classical Preisach model for hysteresis in piezoceramic actuators. Mechatronics, 2003, 13(2): 85–94
https://doi.org/10.1016/S0957-4158(01)00043-5
9 Kuhnen K. Modeling, identification and compensation of complex hysteretic nonlinearities: A modified Prandtl-Ishlinskii approach. European Journal of Control, 2003, 9(4): 407–418
https://doi.org/10.3166/ejc.9.407-418
10 Gu G, Yang M, Zhu L. Real-time inverse hysteresis compensation of piezoelectric actuators with a modified Prandtl-Ishlinskii model. Review of Scientific Instruments, 2012, 83(6): 065106
https://doi.org/10.1063/1.4728575 pmid: 22755661
11 Gu G, Zhu L, Su C. Modeling and compensation of asymmetric hysteresis nonlinearity for piezoceramic actuators with a modified Prandtl-Ishlinskii model. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1583–1595
https://doi.org/10.1109/TIE.2013.2257153
12 Liu S, Su C. A note on the properties of a generalized Prandtl-Ishlinskii model. Smart Materials and Structures, 2011, 20(8): 087003
https://doi.org/10.1088/0964-1726/20/8/087003
13 Ang W, Khosla P, Riviere C. Feedforward controller with inverse rate-dependent model for piezoelectric actuators in trajectory-tracking applications. IEEE/ASME Transactions on Mechatronics, 2007, 12(2): 134–142
https://doi.org/10.1109/TMECH.2007.892824
14 Tan U X, Latt W T, Widjaja F, Tracking control of hysteretic piezoelectric actuator using adaptive rate-dependent controller. Sensors and Actuators. A, Physical, 2009, 150(1): 116–123
https://doi.org/10.1016/j.sna.2008.12.012 pmid: 20161217
15 Janaideh M, Su C, Rakheja S. Development of the rate-dependent Prandtl-Ishlinskii model for smart actuators. Smart Materials and Structures, 2008, 17(3): 035026
https://doi.org/10.1088/0964-1726/17/3/035026
16 Janaideh M, Krejc P. Inverse rate-dependent Prandtl-Ishlinskii model for feedforward compensation of hysteresis in a piezomicropositioning actuator. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1498–1507
https://doi.org/10.1109/TMECH.2012.2205265
17 Zhang G, Zhang C, Gu J. Modeling and control of rate-dependent hysteresis in piezoelectric actuators. In: Proceedings of the 32nd Chinese Control Conference (CCC). IEEE, 2013, 1929–1934
18 Janocha H, Kuhnen K. Real-time compensation of hysteresis and creep in piezoelectric actuators. Sensors and Actuators, 2000, 79(2): 83–89
https://doi.org/10.1016/S0924-4247(99)00215-0
19 Yang M, Gu G, Zhu L. Parameter identification of the generalized Prandtl-Ishlinskii model for piezoelectric actuators using modified particle swarm optimization. Sensors and Actuators. A, Physical, 2013, 189: 254–265
https://doi.org/10.1016/j.sna.2012.10.029
20 Li C, Gu G, Yang M, Design, analysis and testing of a parallel-kinematic high-bandwidth XY nanopositioning stage. Review of Scientific Instruments, 2013, 84(12): 125111
https://doi.org/10.1063/1.4848876 pmid: 24387472
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed