Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2019, Vol. 14 Issue (1): 113-127   https://doi.org/10.1007/s11465-018-0482-1
  本期目录
Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review
B. J. WANG1, D. K. XU2(), S. D. WANG2, E. H. HAN2
1. School of Environmental and Chemical Engineering, Shenyang Ligong University, Shenyang 110159, China
2. CAS Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
 全文: PDF(1520 KB)   HTML
Abstract

The most advantageous property of magnesium (Mg) alloys is their density, which is lower compared with traditional metallic materials. Mg alloys, considered the lightest metallic structural material among others, have great potential for applications as secondary load components in the transportation and aerospace industries. The fatigue evaluation of Mg alloys under elastic stress amplitudes is very important in ensuring their service safety and reliability. Given their hexagonal close packed structure, the fatigue crack initiation of Mg and its alloys is closely related to the deformation mechanisms of twinning and basal slips. However, for Mg alloys with shrinkage porosities and inclusions, fatigue cracks will preferentially initiate at these defects, remarkably reducing the fatigue lifetime. In this paper, some fundamental aspects about the fatigue crack initiation mechanisms of Mg alloys are reviewed, including the 3 followings: 1) Fatigue crack initiation of as-cast Mg alloys, 2) influence of microstructure on fatigue crack initiation of wrought Mg alloys, and 3) the effect of heat treatment on fatigue initiation mechanisms. Moreover, some unresolved issues and future target on the fatigue crack initiation mechanism of Mg alloys are also described.

Key wordsMg alloys    fatigue behavior    microstructure    crack initiation    deformation mechanism
收稿日期: 2017-05-04      出版日期: 2018-11-30
Corresponding Author(s): D. K. XU   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2019, 14(1): 113-127.
B. J. WANG, D. K. XU, S. D. WANG, E. H. HAN. Fatigue crack initiation of magnesium alloys under elastic stress amplitudes: A review. Front. Mech. Eng., 2019, 14(1): 113-127.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-018-0482-1
https://academic.hep.com.cn/fme/CN/Y2019/V14/I1/113
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
1 Mordike B L, Ebert T. Magnesium: Properties—applications— potential. Materials Science and Engineering: A, 2001, 302(1): 37–45
https://doi.org/10.1016/S0921-5093(00)01351-4
2 Mayer H, Papakyriacou M, Zettl B, et al. Influence of porosity on the fatigue limit of die cast magnesium and aluminium alloys. International Journal of Fatigue, 2003, 25(3): 245–256
https://doi.org/10.1016/S0142-1123(02)00054-3
3 Chapetti M, Tagawa T, Miyata T. Ultra-long cycle fatigue of high-strength carbon steels Part II: Estimation of fatigue limit for failure from internal inclusions. Materials Science and Engineering: A, 2003, 356(1–2): 236–244
https://doi.org/10.1016/S0921-5093(03)00136-9
4 Eisenmeier G, Holzwarth B, Höppel H W. Cyclic deformation and fatigue behaviour of the magnesium alloy AZ91. Materials Science and Engineering: A, 2001, 319–321: 578–582
https://doi.org/10.1016/S0921-5093(01)01105-4
5 Xu D, Liu L, Xu Y, et al. The fatigue behavior of I-phase containing as-cast Mg-Zn-Y-Zr alloy. Acta Materialia, 2008, 56(5): 985–994
https://doi.org/10.1016/j.actamat.2007.10.057
6 Tokaji K, Kamakura M. Fatigue behaviour and fracture mechanism of a rolled AZ31 magnesium alloy. International Journal of Fatigue, 2004, 26(11): 1217–1224
https://doi.org/10.1016/j.ijfatigue.2004.03.015
7 Lv F, Yang F, Duan Q, et al. Fatigue properties of rolled magnesium alloy (AZ31) sheet: Influence of specimen orientation. International Journal of Fatigue, 2011, 33(5): 672–682
https://doi.org/10.1016/j.ijfatigue.2010.10.013
8 Yang F, Yin S, Li S, et al. Crack initiation mechanism of extruded AZ31 magnesium alloy in the very high cycle fatigue regime. Materials Science and Engineering: A, 2008, 491(1–2): 131–136
https://doi.org/10.1016/j.msea.2008.02.003
9 Uematsu Y, Kakiuchi T, Tamada K, et al. EBSD analysis of fatigue crack initiation behavior in coarse-grained AZ31 magnesium alloy. International Journal of Fatigue, 2016, 84: 1–8
https://doi.org/10.1016/j.ijfatigue.2015.11.010
10 Yu D, Zhang D, Sun J, et al.High cycle fatigue behavior of extruded and double-aged Mg-6Zn-1Mn alloy. Materials Science and Engineering: A, 2016, 662: 1–8
https://doi.org/10.1016/j.msea.2016.02.079
11 Wang S, Xu D, Wang B, et al. Effect of solution treatment on the fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy. Scientific Reports, 2016, 6(1): 23955
https://doi.org/10.1038/srep23955
12 Xu D, Han E. Effect of yttrium content on the ultra-high cycle fatigue behavior of Mg-Zn-Y-Zr alloys. Materials Science Forum, 2015, 816: 333–336
https://doi.org/10.4028/www.scientific.net/MSF.816.333
13 Xu D, Han E. Relationship between fatigue crack initiation and activated {10 1¯2} twins in as-extruded pure magnesium. Scripta Materialia, 2013, 69(9): 702–705
https://doi.org/10.1016/j.scriptamat.2013.08.006
14 Xu D, Liu L, Xu Y, et al. The micro-mechanism of fatigue crack propagation for a forged Mg-Zn-Y-Zr alloy in the gigacycle fatigue regime. Journal of Alloys and Compounds, 2008, 454(1–2): 123–128
https://doi.org/10.1016/j.jallcom.2006.12.043
15 Xu D, Liu L, Xu Y, et al.The crack initiation mechanism of the forged Mg-Zn-Y-Zr alloy in the super-long fatigue life regime. Scripta Materialia, 2007, 56(1): 1–4
https://doi.org/10.1016/j.scriptamat.2006.09.006
16 Shih T, Liu W, Chen Y. Fatigue of as-extruded AZ61A magnesium alloy. Materials Science and Engineering: A, 2002, 325(1–2): 152–162
https://doi.org/10.1016/S0921-5093(01)01411-3
17 Zenner H, Renner F. Cyclic material behaviour of magnesium die castings and extrusions. International Journal of Fatigue, 2002, 24(12): 1255–1260
https://doi.org/10.1016/S0142-1123(02)00042-7
18 Wang B, Xu D, Dong J, et al. Effect of the crystallographic orientation and twinning on the corrosion resistance of an as-extruded Mg-3Al-1Zn (wt.%) bar. Scripta Materialia, 2014, 88: 5–8
https://doi.org/10.1016/j.scriptamat.2014.06.015
19 Potzies C, Kainer K U. Fatigue of magnesium alloys. Advanced Engineering Materials, 2004, 6(5): 281–289
https://doi.org/10.1002/adem.200400021
20 Sajuri Z B, Miyashita Y, Hosokai Y, et al. Effects of Mn content and texture on fatigue properties of as-cast and extruded AZ61 magnesium alloys. International Journal of Mechanical Sciences, 2006, 48(2): 198–209
https://doi.org/10.1016/j.ijmecsci.2005.09.003
21 Horstemeyer M F, Yang N, Gall K, et al. High cycle fatigue of a die cast AZ91E-T4 magnesium alloy. Acta Materialia, 2004, 52(5): 1327–1336
https://doi.org/10.1016/j.actamat.2003.11.018
22 Mayer H, Lipowsky H, Papakyriacou M, et al. Application of ultrasound for fatigue testing of lightweight alloys. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(7): 591–599
https://doi.org/10.1046/j.1460-2695.1999.00205.x
23 Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles. Acta Materialia, 2002, 50(9): 2343–2356
https://doi.org/10.1016/S1359-6454(02)00067-8
24 Li Z, Fu P, Peng L, et al. Comparison of high cycle fatigue behaviors of Mg-3Nd-0.2Zn-Zr alloy prepared by different casting processes. Materials Science and Engineering: A, 2013, 579: 170–179
https://doi.org/10.1016/j.msea.2013.05.040
25 Wang S, Xu D, Wang B, et al. Effect of corrosion attack on the fatigue behavior of an as-cast Mg-7%Gd-5%Y-1%Nd-0.5%Zr alloy. Materials & Design, 2015, 84: 185–193
https://doi.org/10.1016/j.matdes.2015.06.109
26 Murakami Y, Kodama S, Konuma S. Quantitative evaluation of effects of non-metallic inclusions on fatigue strength of high strength steels. I: Basic fatigue mechanism and evaluation of correlation between the fatigue fracture stress and the size and location of non-metallic inclusions. International Journal of Fatigue, 1989, 11(5): 291–298
https://doi.org/10.1016/0142-1123(89)90054-6
27 Polak J, Man J, Obrtlik K. AFM evidence of surface relief formation and models of fatigue crack nucleation. International Journal of Fatigue, 2003, 25(9–11): 1027–1036
https://doi.org/10.1016/S0142-1123(03)00114-2
28 Mughrabi H. Dislocation clustering and long-range internal stresses in monotonically and cyclically deformed metal crystals. Revue de Physique Appliquée (Paris), 1988, 23(4): 367–379
https://doi.org/10.1051/rphysap:01988002304036700
29 Harvey S E, Marsh P G, Gerberich W W. Atomic force microscopy and modeling of fatigue crack initiation in metals. Acta Metallurgica et Materialia, 1994, 42(10): 3493–3502
https://doi.org/10.1016/0956-7151(94)90481-2
30 Man J, Obrtlik K, Blochwitz C, et al. Atomic force microscopy of surface relief in individual grains of fatigued 316L austenitic stainless steel. Acta Materialia, 2002, 50(15): 3767–3780
https://doi.org/10.1016/S1359-6454(02)00167-2
31 Polák J, Man J, Vystavel T, et al. The shape of extrusions and intrusions and initiation of stage I fatigue cracks. Materials Science and Engineering: A, 2009, 517(1–2): 204–211
https://doi.org/10.1016/j.msea.2009.03.070
32 Yin S, Yang F, Yang X, et al. The role of twinning-detwinning on fatigue fracture morphology of Mg-3%Al-1%Zn alloy. Materials Science and Engineering: A, 2008, 494(1–2): 397–400
https://doi.org/10.1016/j.msea.2008.04.056
33 Cáceres C H, Sumitomo T, Veidt M. Pseudoelastic behaviour of cast magnesium AZ91 alloy under cyclic loading-unloading. Acta Materialia, 2003, 51(20): 6211–6218
https://doi.org/10.1016/S1359-6454(03)00444-0
34 Obara T, Yoshinga H, Morozumi S. {112̄2}<1123>Slip system in magnesium. Acta Metallurgica, 1973, 21(7): 845–853
https://doi.org/10.1016/0001-6160(73)90141-7
35 Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium. Acta Metallurgica, 1982, 30(10): 1909–1919
https://doi.org/10.1016/0001-6160(82)90031-1
36 Yu Q, Zhang J, Jiang Y. Fatigue damage development in pure polycrystalline magnesium under cyclic tension-compression loading. Materials Science and Engineering: A, 2011, 528(25–26): 7816–7826
https://doi.org/10.1016/j.msea.2011.06.064
37 Lahaie D, Embury J D, Chadwick M M, et al. A note on the deformation of fine grained magnesium alloys. Scripta Metallurgica et Materialia, 1992, 27(2): 139–142
https://doi.org/10.1016/0956-716X(92)90102-K
38 Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn. Acta Materialia, 2004, 52(17): 5093–5103
https://doi.org/10.1016/j.actamat.2004.07.015
39 Barnett M R. A rationale for the strong dependence of mechanical twinning on grain size. Scripta Materialia, 2008, 59(7): 696–698
https://doi.org/10.1016/j.scriptamat.2008.05.027
40 Li Z, Wang Q, Luo A, et al. High cycle fatigue of cast Mg-3Nd-0.2Zn magnesium alloys. Metallurgical and Materials Transactions. A, Physical Metallurgy and Materials Science, 2013, 44(11): 5202–5215
https://doi.org/10.1007/s11661-013-1843-3
41 Li Z, Fu P, Peng L, et al. Influence of solution temperature on fatigue behavior of AM-SC1 cast magnesium alloy. Materials Science and Engineering: A, 2013, 565: 250–257
https://doi.org/10.1016/j.msea.2012.12.035
42 Bag A, Zhou W. Tensile and fatigue behavior of AZ91D magnesium alloy. Journal of Materials Science Letters, 2001, 20(5): 457–459
https://doi.org/10.1023/A:1010919017805
43 Dong J, Liu W C, Song X, et al. Influence of heat treatment on fatigue behaviour of high-strength Mg-10Gd-3Y alloy. Materials Science and Engineering: A, 2010, 527(21–22): 6053–6063
https://doi.org/10.1016/j.msea.2010.06.030
44 Adams J F, Allison J E, Jones J W. The effects of heat treatment on very high cycle fatigue behavior in hot-rolled WE43 magnesium. International Journal of Fatigue, 2016, 93: 372–386
https://doi.org/10.1016/j.ijfatigue.2016.05.033
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed