Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2018, Vol. 13 Issue (1): 74-84   https://doi.org/10.1007/s11465-018-0490-1
  本期目录
Three-dimensional numerical simulation for plastic injection-compression molding
Yun ZHANG1(), Wenjie YU1, Junjie LIANG1, Jianlin LANG2, Dequn LI1
1. State Key Laboratory of Material Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China
2. Beijing Institute of Aeronautical Materials, Beijing 100095, China
 全文: PDF(452 KB)   HTML
Abstract

Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian-Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

Key wordsinjection-compression molding    simulation    injection molding    melt flow    cavity pressure
收稿日期: 2017-04-29      出版日期: 2018-01-23
Corresponding Author(s): Yun ZHANG   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2018, 13(1): 74-84.
Yun ZHANG, Wenjie YU, Junjie LIANG, Jianlin LANG, Dequn LI. Three-dimensional numerical simulation for plastic injection-compression molding. Front. Mech. Eng., 2018, 13(1): 74-84.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-018-0490-1
https://academic.hep.com.cn/fme/CN/Y2018/V13/I1/74
Fig.1  
Fig.2  
Fig.3  
Parameter Value Parameter Value
τ/Pa 720887 Cp/(J·kg-1·K-1) 1880
n˜ 0.17 k/(W·m-1·K-1) 0.24
A 1 38.724 b1/(m3·kg–1) 8.65e–4 (melt), 8.61e–4 (solid)
A˜2/K 51.6 b2/(m3·kg–1·K-1) 4.83e–7 (melt), 5.85e–8 (solid)
D1/(Pa·S) 5.95e15 b3/Pa 1.74e+8 (melt), 3.43e+8 (solid)
D2/K 417.15 b4/K-1 4.39e–3 (melt), 2.27e–3 (solid)
D3/(K·Pa-1) 0 b5/K 415.98 (melt, solid)
ρ/(kg·m-3) 1034.7
Tab.1  
Molding method Screw stroke/mm Process condition
Injection molding 103 Injection with 10 mm/s
95 Injection with 20 mm/s
85 Injection with 30 mm/s
15 Holding for 5 s with 40 MPa
Injection-compression molding 103 Injection with 10 mm/s
95 Injection with 20 mm/s
85 Injection with 30 mm/s
40 Compression 3 mm with 1 mm/s
15 Holding for 5 s with 40 MPa
Tab.2  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 Kuo H C, Jeng  M C. The influence of injection molding and injection compression molding on ultra-high molecular weight polyethylene polymer microfabrication. International Polymer Processing, 2011, 26(5): 508–516
https://doi.org/10.3139/217.2466
2 Huang M S, Chung  C F. Injection molding and injection compression molding of thin-walled light-guided plates with V-grooved microfeatures. Journal of Applied Polymer Science, 2011, 121(2): 1151–1159
https://doi.org/10.1002/app.33603
3 Guan W S, Huang  H X. Back melt flow in injection-compression molding: Effect on part thickness distribution. International Communications in Heat and Mass Transfer, 2012, 39(6): 792–797
https://doi.org/10.1016/j.icheatmasstransfer.2012.04.012
4 Young W B. On the residual stress and shrinkage in injection compression molding. International Polymer Processing, 2003, 18(3): 313–320
https://doi.org/10.3139/217.1754
5 Huang H, Li  K, Li S. Injection-compression molded part shrinkage uniformity comparison between semicrystalline and amorphous plastics. Polymer-Plastics Technology and Engineering, 2008, 48(1): 64–68 
https://doi.org/10.1080/03602550802539742
6 Lee H S, Yoo  Y G. Effects of processing conditions on cavity pressure during injection-compression molding. International Journal of Precision Engineering and Manufacturing, 2012, 13(12): 2155–2161
https://doi.org/10.1007/s12541-012-0286-x
7 Silva C A, Viana  J C, van Hattum  F W J, et al.Fiber orientation in divergent/convergent flows in expansion and compression injection molding. Polymer Composites, 2006, 27(5): 539–551
https://doi.org/10.1002/pc.20152
8 Kim N H, Isayev  A I. Birefringence in injection-compression molding of amorphous polymers: Simulation and experiment. Polymer Engineering and Science, 2013, 53(8): 1786–1808
https://doi.org/10.1002/pen.23429
9 Wang C, Wang  P. Analysis of optical properties in injection-molded and compression-molded optical lenses. Applied Optics, 2014, 53(11): 2523–2531
https://doi.org/10.1364/AO.53.002523
10 Xie M, Chen  J, Li H. Morphology and mechanical properties of injection-molded ultrahigh molecular weight polyethylene/polypropylene blends and comparison with compression molding. Journal of Applied Polymer Science, 2009, 111(2): 890–898
11 Chen S, Chen  Y, Peng H. Simulation of injection-compression-molding process. II. Influence of process characteristics on part shrinkage. Journal of Applied Polymer Science, 2000, 75(13): 1640–1654
https://doi.org/10.1002/(SICI)1097-4628(20000328)75:13<1640::AID-APP10>3.0.CO;2-L
12 Ho J Y, Park  J M, Kang  T G, et al.Three-dimensional numerical analysis of injection-compression molding process. Polymer Engineering and Science, 2012, 52(4): 901–911
https://doi.org/10.1002/pen.22157
13 Li Y, Zhang  Y, Li D. Shrinkage analysis of injection-compression molding for transparent plastic panel by 3D simulation. Applied Mechanics and Materials, 2011, 44–47: 1029–1033
14 Cao W, Min  Z Y, Zhang  S X, et al.Numerical simulation for flow-induced stress in injection/compression molding. Polymer Engineering and Science, 2016, 56(3): 287–298
https://doi.org/10.1002/pen.24254
15 Cao W, Hua  S Z, Zhang  S X, et al.Three-dimensional viscoelastic simulation for injection/compression molding based on arbitrary Lagrangian Eulerian description. Journal of Computational and Nonlinear Dynamics, 2016, 11(5): 051004
https://doi.org/10.1115/1.4032384
16 Tryggvason G, Bunner  B, Esmaeeli A, et al.A front-tracking method for the computations of multiphase flow. Journal of Computational Physics, 2001, 169(2): 708–759
https://doi.org/10.1006/jcph.2001.6726
17 Gueyffier D, Li  J, Nadim A, et al.Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 1999, 152(2): 423–456
https://doi.org/10.1006/jcph.1998.6168
18 Young W B. Filling and postfilling analysis of injection/compression molding. International Polymer Processing, 2000, 15(4): 416–422
https://doi.org/10.3139/217.1618
19 Araújo B J,  Teixeira J C F,  Cunha A M, et al.Parallel three-dimensional simulation of the injection molding process. International Journal for Numerical Methods in Fluids, 2009, 59(7): 801–815
https://doi.org/10.1002/fld.1852
20 Muzaferija S, Gosman  D. Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology. Journal of Computational Physics, 1997, 138(2): 766–787
https://doi.org/10.1006/jcph.1997.5853
21 Ubbink O, Issa  R. A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of Computational Physics, 1999, 153(1): 26–50
https://doi.org/10.1006/jcph.1999.6276
22 Patankar S. Numerical Heat Transfer and Fluid Flow. Columbus: McGraw Hill, 1980, 126–130
23 Agassant J F, Mackley  M R. A personal perspective on the use of modelling simulation for polymer melt processing. International Polymer Processing, 2015, 30(1): 121–140
https://doi.org/10.3139/217.3020
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed