1. State Key Laboratory of Material Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China 2. Beijing Institute of Aeronautical Materials, Beijing 100095, China
Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian-Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.
Kuo H C, Jeng M C. The influence of injection molding and injection compression molding on ultra-high molecular weight polyethylene polymer microfabrication. International Polymer Processing, 2011, 26(5): 508–516 https://doi.org/10.3139/217.2466
2
Huang M S, Chung C F. Injection molding and injection compression molding of thin-walled light-guided plates with V-grooved microfeatures. Journal of Applied Polymer Science, 2011, 121(2): 1151–1159 https://doi.org/10.1002/app.33603
3
Guan W S, Huang H X. Back melt flow in injection-compression molding: Effect on part thickness distribution. International Communications in Heat and Mass Transfer, 2012, 39(6): 792–797 https://doi.org/10.1016/j.icheatmasstransfer.2012.04.012
4
Young W B. On the residual stress and shrinkage in injection compression molding. International Polymer Processing, 2003, 18(3): 313–320 https://doi.org/10.3139/217.1754
5
Huang H, Li K, Li S. Injection-compression molded part shrinkage uniformity comparison between semicrystalline and amorphous plastics. Polymer-Plastics Technology and Engineering, 2008, 48(1): 64–68 https://doi.org/10.1080/03602550802539742
6
Lee H S, Yoo Y G. Effects of processing conditions on cavity pressure during injection-compression molding. International Journal of Precision Engineering and Manufacturing, 2012, 13(12): 2155–2161 https://doi.org/10.1007/s12541-012-0286-x
7
Silva C A, Viana J C, van Hattum F W J, et al.Fiber orientation in divergent/convergent flows in expansion and compression injection molding. Polymer Composites, 2006, 27(5): 539–551 https://doi.org/10.1002/pc.20152
8
Kim N H, Isayev A I. Birefringence in injection-compression molding of amorphous polymers: Simulation and experiment. Polymer Engineering and Science, 2013, 53(8): 1786–1808 https://doi.org/10.1002/pen.23429
9
Wang C, Wang P. Analysis of optical properties in injection-molded and compression-molded optical lenses. Applied Optics, 2014, 53(11): 2523–2531 https://doi.org/10.1364/AO.53.002523
10
Xie M, Chen J, Li H. Morphology and mechanical properties of injection-molded ultrahigh molecular weight polyethylene/polypropylene blends and comparison with compression molding. Journal of Applied Polymer Science, 2009, 111(2): 890–898
Ho J Y, Park J M, Kang T G, et al.Three-dimensional numerical analysis of injection-compression molding process. Polymer Engineering and Science, 2012, 52(4): 901–911 https://doi.org/10.1002/pen.22157
13
Li Y, Zhang Y, Li D. Shrinkage analysis of injection-compression molding for transparent plastic panel by 3D simulation. Applied Mechanics and Materials, 2011, 44–47: 1029–1033
14
Cao W, Min Z Y, Zhang S X, et al.Numerical simulation for flow-induced stress in injection/compression molding. Polymer Engineering and Science, 2016, 56(3): 287–298 https://doi.org/10.1002/pen.24254
15
Cao W, Hua S Z, Zhang S X, et al.Three-dimensional viscoelastic simulation for injection/compression molding based on arbitrary Lagrangian Eulerian description. Journal of Computational and Nonlinear Dynamics, 2016, 11(5): 051004 https://doi.org/10.1115/1.4032384
16
Tryggvason G, Bunner B, Esmaeeli A, et al.A front-tracking method for the computations of multiphase flow. Journal of Computational Physics, 2001, 169(2): 708–759 https://doi.org/10.1006/jcph.2001.6726
17
Gueyffier D, Li J, Nadim A, et al.Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. Journal of Computational Physics, 1999, 152(2): 423–456 https://doi.org/10.1006/jcph.1998.6168
18
Young W B. Filling and postfilling analysis of injection/compression molding. International Polymer Processing, 2000, 15(4): 416–422 https://doi.org/10.3139/217.1618
19
Araújo B J, Teixeira J C F, Cunha A M, et al.Parallel three-dimensional simulation of the injection molding process. International Journal for Numerical Methods in Fluids, 2009, 59(7): 801–815 https://doi.org/10.1002/fld.1852
20
Muzaferija S, Gosman D. Finite-volume CFD procedure and adaptive error control strategy for grids of arbitrary topology. Journal of Computational Physics, 1997, 138(2): 766–787 https://doi.org/10.1006/jcph.1997.5853
21
Ubbink O, Issa R. A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of Computational Physics, 1999, 153(1): 26–50 https://doi.org/10.1006/jcph.1999.6276
22
Patankar S. Numerical Heat Transfer and Fluid Flow. Columbus: McGraw Hill, 1980, 126–130
23
Agassant J F, Mackley M R. A personal perspective on the use of modelling simulation for polymer melt processing. International Polymer Processing, 2015, 30(1): 121–140 https://doi.org/10.3139/217.3020