Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2020, Vol. 15 Issue (2): 193-208   https://doi.org/10.1007/s11465-019-0569-3
  本期目录
Sagittal SLIP-anchored task space control for a monopode robot traversing irregular terrain
Haitao YU(), Haibo GAO, Liang DING, Zongquan DENG
State Key Laboratory of Robotics and Systems, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF(2889 KB)   HTML
Abstract

As a well-explored template that captures the essential dynamical behaviors of legged locomotion on sagittal plane, the spring-loaded inverted pendulum (SLIP) model has been extensively employed in both biomechanical study and robotics research. Aiming at fully leveraging the merits of the SLIP model to generate the adaptive trajectories of the center of mass (CoM) with maneuverability, this study presents a novel two-layered sagittal SLIP-anchored (SSA) task space control for a monopode robot to deal with terrain irregularity. This work begins with an analytical investigation of sagittal SLIP dynamics by deriving an approximate solution with satisfactory apex prediction accuracy, and a two-layered SSA task space controller is subsequently developed for the monopode robot. The higher layer employs an analytical approximate representation of the sagittal SLIP model to form a deadbeat controller, which generates an adaptive reference trajectory for the CoM. The lower layer enforces the monopode robot to reproduce a generated CoM movement by using a task space controller to transfer the reference CoM commands into joint torques of the multi-degree of freedom monopode robot. Consequently, an adaptive hopping behavior is exhibited by the robot when traversing irregular terrain. Simulation results have demonstrated the effectiveness of the proposed method.

Key wordslegged robots    spring-loaded inverted pendulum    task space control    apex return map    deadbeat control    irregular terrain negotiation
收稿日期: 2019-05-20      出版日期: 2020-05-25
Corresponding Author(s): Haitao YU   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2020, 15(2): 193-208.
Haitao YU, Haibo GAO, Liang DING, Zongquan DENG. Sagittal SLIP-anchored task space control for a monopode robot traversing irregular terrain. Front. Mech. Eng., 2020, 15(2): 193-208.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-019-0569-3
https://academic.hep.com.cn/fme/CN/Y2020/V15/I2/193
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Algorithm: Determination of the touchdown angle and the leg stiffness in solving problem Eq. (7)
Input:
The initial apex state S0
The target apex state Sd
The initial leg stiffness ks
Output:
The touchdown angle αTD
The leg stiffness kc and kd
1. Initialize the current leg stiffness kcks
2. Compute the energy variation ΔEby using Eq. (9)
3. for αTD = π/4 to π/2 do
4. Compute the approximation of the leg length at BM r˜BM
5. kdkc +2ΔE/ (r r˜BM)2
6. Compute sub-maps Pfd, P˜st, Pfu
7. Compute the A2RM P ˜ P fdP˜stPfu
8. Compute the predicted apex state S˜ n+1 P˜(S0, (αTD ,kc, kd) T)
9. αTD=arg min Sd P˜(S0 ,( αTD,k c,kd)T)
10. end for
11. redo Steps 3 and 4
12. return αTD, kc, and kd
13 Update the leg stiffness for the coming compression sub-phase with kskd
14. end algorithm
Tab.1  
Fig.5  
Fig.6  
Fig.7  
Parameter Symbol Value Unit
Upper body mass mb 12 kg
Shank mass m1 3.5 kg
Thigh mass m2 3.5 kg
Shank inertia J1 0.08 kg·m2
Thigh inertia J2 0.08 kg·m2
Shank length l1 0.5 m
Thigh length l2 0.5 m
Shank CoM length lC1 0.25 m
Thigh CoM length lC2 0.25 m
Tab.2  
Parameter Symbol Value Unit
Total mass ms 19 kg
Leg length r0 0.8 m
Leg stiffness ks 3200 N/m
Tab.3  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Comparison items Traditional SLIP controller [10] Proposed deadbeat controller
System representation Nonlinear differential equations Analytical approximations
Control input AoT AoT and leg stiffness
Control policy Fixed AoT Adjustable AoT and leg stiffness
Steering duration Only flight phase Both flight and stance phase
System energy Conservation Adding/removing energy
Steerable apex state Height or velocity height and velocity (independent)
Period of apex steering Asymptotically Only within a one-gait cycle
Terrain adaptability Flat ground Flat and uneven ground
Practical implementation Fourth-order Runge–Kutta solver Direct coding
Tab.4  
Fig.15  
Fig.16  
1 R Blickhan, R J Full. Similarity in multilegged locomotion: Bouncing like a monopde. Journal of Comparative Physiology, 1993, 173: 509–517
https://doi.org/10.1007/BF00197760
2 C Hubicki, J Grimes, M Jones, et al. ATRIAS: Design and validation of a tether-free 3D-capable spring-mass bipedal robot. International Journal of Robotics Research, 2016, 35(12): 1497–1521
https://doi.org/10.1177/0278364916648388
3 K Sreenath, H Park, I Poulakakis, et al. A compliant hybrid zero dynamics controller for stable, efficient and fast bipedal walking on MABEL. International Journal of Robotics Research, 2011, 30(9): 1170–1193
https://doi.org/10.1177/0278364910379882
4 D W Haldane, J K Yim, R S Fearing. Repetitive extreme-acceleration (14-g) spatial jumping with Salto-1P. In: Proceedings of 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vancouver: IEEE, 2017, 3345–3351
https://doi.org/10.1109/IROS.2017.8206172
5 S Seok, A Wang, D Otten, et al. Actuator design for high force proprioceptive control in fast legged locomotion. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura: IEEE, 2012, 1970–1975
https://doi.org/10.1109/IROS.2012.6386252
6 C Farley, J Glasheen, T McMahon. Running springs: Speed and animal size. Journal of Experimental Biology, 1993, 185: 71–86
7 R Blickhan. The spring-mass model for running and hopping. Journal of Biomechanics, 1989, 22(11–12): 1217–1227
https://doi.org/10.1016/0021-9290(89)90224-8
8 W J Schwind, D E Koditschek. Approximating the stance map of a 2-DOF monoped runner. Journal of Nonlinear Science, 2000, 10(5): 533–568
https://doi.org/10.1007/s004530010001
9 R M Ghigliazza, R Altendorfer, P Holmes, et al. A simply stabilized running model. SIAM Review, 2005, 47(3): 519–549
https://doi.org/10.1137/050626594
10 H Geyer, A Seyfarth, R Blickhan. Spring-mass running: Simple approximate solution and application to gait stability. Journal of Theoretical Biology, 2005, 232(3): 315–328
https://doi.org/10.1016/j.jtbi.2004.08.015
11 Ö Arslan, U Saranli, Ö Morgül. Approximate stance map of the spring mass hopper with gravity correction for nonsymmetric locomotions. In: Proceedings of 2009 IEEE International Conference on Robotics and Automation (ICRA). Kobe: IEEE, 2009, 2388–2393
https://doi.org/10.1109/ROBOT.2009.5152470
12 M Shahbazi, R Babuška, G A D Lopes. Unified modeling and control of walking and running on the spring-loaded inverted pendulum. IEEE Transactions on Robotics, 2016, 32(5): 1178–1195
https://doi.org/10.1109/TRO.2016.2593483
13 H Yu, M Li, P Wang, et al. Approximate perturbation stance map of the slip runner and application to locomotion control. Journal of Bionics Engineering, 2012, 9(4): 411–422
https://doi.org/10.1016/S1672-6529(11)60138-8
14 M Hutter, C D Remy, A Höpflinger, et al. SLIP running with an articulated robotic leg. In: Proceedings of 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Taipei: IEEE, 2010, 4934–4939
https://doi.org/10.1109/IROS.2010.5651461
15 G Piovan, K Byl. Approximation and control of the SLIP model dynamics via partial feedback linearization and two-element leg actuation strategy. IEEE Transactions on Robotics, 2016, 32(2): 399–412
https://doi.org/10.1109/TRO.2016.2529649
16 A Seyfarth, H Geyer, H Herr. Swing-leg retraction: A simple control model for stable running. Journal of Experimental Biology, 2003, 206(15): 2547–2555
https://doi.org/10.1242/jeb.00463
17 J G D Karseen, M Haberland, M Wisse, et al. The optimal swing-leg retraction rate for running. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation (ICRA). Shanghai: IEEE, 2011, 4000–4006
https://doi.org/10.1109/ICRA.2011.5980168
18 J Yu, D Hong, M Haberland. Energetic efficiency of a compositional controller on a monoped with an articulated leg and SLIP dynamics. In: Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Madrid: IEEE, 2018, 2221–2228
https://doi.org/10.1109/IROS.2018.8593638
19 M Rustchmann, B Satzinger, M Byl, et al. Nonlinear model predictive control for rough-terrain robot hopping. In: Proceedings of 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Vilamoura: IEEE, 2012, 1859–1864
https://doi.org/10.1109/IROS.2012.6385865
20 O C Garofalo, A Albu-Schäffer. Walking control of fully actuated robots based on the Bipedal SLIP model. In: Proceedings of 2012 International Conference on Robotics and Automation (ICRA). Saint Paul: IEEE, 2012, 1456–1463
https://doi.org/10.1109/ICRA.2012.6225272
21 P M Wensing, D E Orin. High-speed humanoid running through control with a 3D-SLIP model. In: Proceedings of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Tokyo: IEEE, 2013, 5134–5140
https://doi.org/10.1109/IROS.2013.6697099
22 P M Wensing, D E Orin. 3D-SLIP steering for high-speed humanoid turns. In: Proceedings of 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Chicago: IEEE, 2014, 4008–4013
https://doi.org/10.1109/IROS.2014.6943126
23 M Ernst, H Geyer, R Blickhan. Extension and customization of self-stability control in compliant legged systems. Bioinspiration & Biomimetics, 2012, 7(4): 046002
https://doi.org/10.1088/1748-3182/7/4/046002
24 O Khatib. A unified approach for motion and force control of robot manipulators: The operational space formulation. IEEE Journal on Robotics and Automation, 1987, 3(1): 43–53
https://doi.org/10.1109/JRA.1987.1087068
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed