Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2023, Vol. 18 Issue (2): 22   https://doi.org/10.1007/s11465-022-0738-7
  本期目录
Design and evaluation of a novel biopsy needle with hemostatic function
Xiaolong ZHU1, Yichi MA2, Xiao XIAO1, Liang LU1, Wei XIAO1, Ziqi ZHAO1, Hongliang REN3(), Max Q.-H. MENG1()
1. Department of Electronic and Electrical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
2. Department of Mechanical Engineering, University of California, Berkeley, Berkeley, CA 48072, USA
3. Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong, China
 全文: PDF(5080 KB)   HTML
Abstract

Biopsy is a method commonly used for early cancer diagnosis. However, bleeding complications of widely available biopsy are risky for patients. Safer biopsy will result in a more accurate cancer diagnosis and a decrease in the risk of complications. In this article, we propose a novel biopsy needle that can reduce bleeding during biopsy procedures and achieve stable hemostasis. The proposed biopsy needle features a compact structure and can be operated easily by left and right hands. A predictive model for puncture force and tip deflection based on coupled Eulerian–Lagrangian (CEL) method is developed. Experimental results show that the biopsy needle can smoothly deliver the gelatin sponge hemostatic plug into the tissue. Although the hemostatic plug bends, the overall delivery process is stable, and the hemostatic plug retains in the tissue without being affected by the withdrawal of the needle. Further experiments indicate that the specimens are well obtained and evenly distributed in the groove of the outer needle without scattering. Our proposed design of biopsy needle possesses strong ability of hemostasis, tissue cutting, and tissue retention. The CEL model accurately predicts the peak of puncture force and produces close estimation of the insertion force at the postpuncture stage and tip position.

Key wordscancer diagnosis    biopsy needle    hemostatic function    predictive model    coupled Eulerian−Lagrangian
收稿日期: 2022-02-16      出版日期: 2023-05-04
Corresponding Author(s): Hongliang REN,Max Q.-H. MENG   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2023, 18(2): 22.
Xiaolong ZHU, Yichi MA, Xiao XIAO, Liang LU, Wei XIAO, Ziqi ZHAO, Hongliang REN, Max Q.-H. MENG. Design and evaluation of a novel biopsy needle with hemostatic function. Front. Mech. Eng., 2023, 18(2): 22.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-022-0738-7
https://academic.hep.com.cn/fme/CN/Y2023/V18/I2/22
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
LiteratureTissuePublished dateMethodsMaximum error
Yang et al. [32]Porcine liver2018Viscoelastic14%
Estermann et al. [33]Porcine & bovine liver2020HyperviscoelasticN/A
Li et al. [34]Porcine liver2019Hyperviscoelastic10%
Liu et al. [35]Rat liver2018ViscoelasticN/A
Zheng et al. [36]Human2021PorohyperviscoelasticN/A
Nafo and Al-Mayah [37]Porcine liver2021HyperelasticN/A
Pasyar et al. [38]N/A2020Viscoelastic7.3%
Matin et al. [39]Bovine liver2020Hyperviscoelastic12%
Tab.1  
Fig.6  
Fig.7  
PropertyValue
Young’s modulus of the needle, En2×105 MPa
Poisson’s ratio of the needle, νn0.3
Density of the needle, ρn7850 kg/m3
Density of the tissue, ρt1130 kg/m3
Shear modulus of the tissue, C103.2×10?3 MPa
Relaxation modulus of part 1, g10.78 MPa
Relaxation time of part 1, τ10.42 s
Relaxation modulus of part 2, g20.07 MPa
Relaxation time of part 2, τ29.84 s
Tab.2  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Abbreviations
CELCoupled Eulerian–Lagrangian
FEAFinite element analysis
IDInner diameter
ODOuter diameter
Variables
C10Shear modulus of the tissue
EnYoung’s modulus of the needle
fFrictional resistance
g1, g2Relaxation moduli of parts 1 and 2, respectively
G0Relaxation modulus G(t) evaluated in t = 0
GiRelaxation modulus G(t) evaluated in t = τi
G(t)Relaxation modulus
JElastic volume ratio
kBulk modulus
KStiffness coefficient of spring A
mMass of the slider and inner needle
pHydrostatic pressure
tCutting time
vCutting velocity
WStrain energy density
xDisplacement of slider
μShear modulus
λiShield gravity
σNominal stress
σiNominal stress component
εPrincipal stain
εiPrincipal stain component
νnPoisson’s ratio of the needle
ρnDensity of the needle
ρtDensity of the tissue
τi (i = 1,2)Relaxation time
  
1 C Fitzmaurice , D Dicker , A Pain , H Hamavid , M Moradi-Lakeh , M F MacIntyre , C Allen , G Hansen , R Woodbrook , C Wolfe , R R Hamadeh , A Moore , A Werdecker , B D Gessner , Ao B Te , B McMahon , C Karimkhani , C H Yu , G S Cooke , D C Schwebel , D O Carpenter , D M Pereira , D Nash , D S Kazi , Leo D De , D Plass , K N Ukwaja , G D Thurston , K Y Jin , E P Simard , E Mills , E K Park , F Catalá-López , G deVeber , C Gotay , G Khan , H D III Hosgood , I S Santos , J L Leasher , J Singh , J Leigh , J B Jonas , J Sanabria , J Beardsley , K H Jacobsen , K Takahashi , R C Franklin , L Ronfani , M Montico , L Naldi , M Tonelli , J Geleijnse , M Petzold , M G Shrime , M Younis , N Yonemoto , N Breitborde , P Yip , F Pourmalek , P A Lotufo , A Esteghamati , G J Hankey , R Ali , R Lunevicius , R Malekzadeh , R Dellavalle , R Weintraub , R Lucas , R Hay , D Rojas-Rueda , R Westerman , S G Sepanlou , S Nolte , S Patten , S Weichenthal , S F Abera , S M Fereshtehnejad , I Shiue , T Driscoll , T Vasankari , U Alsharif , V Rahimi-Movaghar , V V Vlassov , W S Marcenes , W Mekonnen , Y A Melaku , Y Yano , A Artaman , I Campos , J MacLachlan , U Mueller , D Kim , M Trillini , B Eshrati , H C Williams , K Shibuya , R Dandona , K Murthy , B Cowie , A T Amare , C A Antonio , C Castañeda-Orjuela , Gool C H van , F Violante , I H Oh , K Deribe , K Soreide , L Knibbs , M Kereselidze , M Green , R Cardenas , N Roy , T Tillmann , Y M Li , H Krueger , L Monasta , S Dey , S Sheikhbahaei , N Hafezi-Nejad , G A Kumar , C T Sreeramareddy , L Dandona , H D Wang , S E Vollset , A Mokdad , J A Salomon , R Lozano , T Vos , M Forouzanfar , A Lopez , C Murray , M Naghavi . The global burden of cancer 2013. JAMA Oncology, 2015, 1(4): 505–527
https://doi.org/10.1001/jamaoncol.2015.0735
2 C Burgard , R Stahl , G N de Figueiredo , J Dinkel , T Liebig , D Cioni , E Neri , C G Trumm . Percutaneous CT fluoroscopy-guided core needle biopsy of mediastinal masses: technical outcome and complications of 155 procedures during a 10-year period. Diagnostics, 2021, 11(5): 781
https://doi.org/10.3390/diagnostics11050781
3 T W James , T H Baron . A comprehensive review of endoscopic ultrasound core biopsy needles. Expert Review of Medical Devices, 2018, 15(2): 127–135
https://doi.org/10.1080/17434440.2018.1425137
4 Y TanisakaM MizuideA FujitaT OgawaR ArakiM SuzukiH KatsudaY SaitoK MiyaguchiT TashimaY MashimoM YasudaS Ryozawa. Comparison of endoscopic ultrasound-guided fine-needle aspiration and biopsy device for lymphadenopathy. Gastroenterology Research and Practice, 2021, 6640862
5 A Kurita , S Yasukawa , Y Zen , K Yoshimura , T Ogura , E Ozawa , Y Okabe , M Asada , H Nebiki , M Shigekawa , T Ikeura , T Eguchi , H Maruyama , T Ueki , M Itonaga , S Hashimoto , H Shiomi , R Minami , N Hoki , M Takenaka , Y Itokawa , N Uza , S Hashigo , H Yasuda , R Takada , H Kamada , H Kawamoto , H Kawakami , I Moriyama , K Fujita , H Matsumoto , K Hanada , T Takemura , S Yazumi . Comparison of a 22-gauge franseen-tip needle with a 20-gauge forward-bevel needle for the diagnosis of type 1 autoimmune pancreatitis: a prospective, randomized, controlled, multicenter study (COMPAS study). Gastrointestinal Endoscopy, 2020, 91(2): 373–381
https://doi.org/10.1016/j.gie.2019.10.012
6 M Ashat , J S Klair , S L Rooney , S J Vishal , C Jensen , N Sahar , A R Murali , R El-Abiad , H Gerke . Randomized controlled trial comparing the franseen needle with the fork-tip needle for EUS-guided fine-needle biopsy. Gastrointestinal Endoscopy, 2021, 93(1): 140–150
https://doi.org/10.1016/j.gie.2020.05.057
7 P Hedenström , A Demir , K Khodakaram , O Nilsson , R Sadik . EUS-guided reverse bevel fine-needle biopsy sampling and open tip fine-needle aspiration in solid pancreatic lesions—a prospective, comparative study. Scandinavian Journal of Gastroenterology, 2018, 53(2): 231–237
https://doi.org/10.1080/00365521.2017.1421704
8 T L de Jong , L H Pluymen , D J van Gerwen , G J Kleinrensink , J Dankelman , J J van den Dobbelsteen . PVA matches human liver in needle-tissue interaction. Journal of the Mechanical Behavior of Biomedical Materials, 2017, 69: 223–228
https://doi.org/10.1016/j.jmbbm.2017.01.014
9 S Mukai , T Itoi , H Yamaguchi , A Sofuni , T Tsuchiya , R Tanaka , R Tonozuka , M Honjo , M Fujita , K Yamamoto , Y Matsunami , Y Asai , T Kurosawa , Y Nagakawa . A retrospective histological comparison of EUS-guided fine-needle biopsy using a novel franseen needle and a conventional end-cut type needle. Endoscopic Ultrasound, 2019, 8(1): 50–57
https://doi.org/10.4103/eus.eus_11_18
10 M Eiro , T Katoh , T Watanabe . Risk factors for bleeding complications in percutaneous renal biopsy. Clinical and Experimental Nephrology, 2005, 9(1): 40–45
https://doi.org/10.1007/s10157-004-0326-7
11 D Csukas , R Urbanics , A Moritz , R Ellis-Behnke . AC5 Surgical HemostatTM as an effective hemostatic agent in an anticoagulated rat liver punch biopsy model. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11(8): 2025–2031
https://doi.org/10.1016/j.nano.2015.01.001
12 M A Lyle , D S Dean . Ultrasound-guided fine-needle aspiration biopsy of thyroid nodules in patients taking novel oral anticoagulants. Thyroid, 2015, 25(4): 373–376
https://doi.org/10.1089/thy.2014.0307
13 M Fujita , A Shiotani , T Murao , M Ishii , Y Yamanaka , R Nakato , H Matsumoto , K Tarumi , N Manabe , T Kamada , J Hata , K Haruma . Safety of gastrointestinal endoscopic biopsy in patients taking antithrombotics. Digestive Endoscopy, 2015, 27(1): 25–29
https://doi.org/10.1111/den.12303
14 C X Deng , V Dogra , A A Exner , H S Wang , S Bhatt , Y Zhou , N T Stowe , J R Haaga . A feasibility study of high intensity focused ultrasound for liver biopsy hemostasis. Ultrasound in Medicine & Biology, 2004, 30(11): 1531–1537
https://doi.org/10.1016/j.ultrasmedbio.2004.08.024
15 F Viola, F W Mauldin, X Lin-Schmidt, D M Haverstick, M B Lawrence, W F Walker. A novel ultrasound-based method to evaluate hemostatic function of whole blood. Clinica Chimica Acta, 2010, 411(1–2): 106–113
https://doi.org/10.1016/j.cca.2009.10.017
16 M Alotaibi , J Shrouder-Henry , J Amaral , D Parra , M Temple , P John , B Connolly . The positive color Doppler sign post biopsy: effectiveness of US-directed compression in achieving hemostasis. Pediatric Radiology, 2011, 41(3): 362–368
https://doi.org/10.1007/s00247-010-1848-7
17 A H Abdulhak, C S Nichols. Stick and move: hemostasis for inpatient punch biopsies. Journal of the American Academy of Dermatology, 2021 (in press)
18 A Rahal Junior , P M Falsarella , V T R Ferreira , G C Mariotti , M R G de Queiroz , R G Garcia . Injecting hemostatic matrix in the path of biopsies: efficacy, potential complications, and the management of such complications. Radiologia Brasileira, 2018, 51(2): 102–105
https://doi.org/10.1590/0100-3984.2017.0011
19 P Wong , K J Johnson , R L Warner , S I Merz , G H Kruger , W F Weitzel . Performance of biopsy needle with therapeutic injection system to prevent bleeding complications. Journal of Medical Devices, 2013, 7(1): 011002
https://doi.org/10.1115/1.4023274
20 B Q Su , S Yu , H Yan , Y D Hu , I Buzurovic , D Y Liu , L L Liu , Y L Teng , J Tang , J C Wang , W Y Liu . Biopsy needle system with a steerable concentric tube and online monitoring of electrical resistivity and insertion forces. IEEE Transactions on Biomedical Engineering, 2021, 68(5): 1702–1713
https://doi.org/10.1109/TBME.2021.3060541
21 G Lapouge , P Poignet , J Troccaz . Towards 3D ultrasound guided needle steering robust to uncertainties, noise, and tissue heterogeneity. IEEE Transactions on Biomedical Engineering, 2021, 68(4): 1166–1177
https://doi.org/10.1109/TBME.2020.3022619
22 S Misra , K B Reed , B W Schafer , K T Ramesh , A M Okamura . Mechanics of flexible needles robotically steered through soft tissue. International Journal of Robotics Research, 2010, 29(13): 1640–1660
https://doi.org/10.1177/0278364910369714
23 M G Jushiddi , A Mani , C Silien , S A M Tofail , P Tiernan , J J E Mulvihill . A computational multilayer model to simulate hollow needle insertion into biological porcine liver tissue. Acta Biomaterialia, 2021, 136: 389–401
https://doi.org/10.1016/j.actbio.2021.09.057
24 B Konh , M Honarvar , K Darvish , P Hutapea . Simulation and experimental studies in needle–tissue interactions. Journal of Clinical Monitoring and Computing, 2017, 31(4): 861–872
https://doi.org/10.1007/s10877-016-9909-6
25 S Jiang , P Li , Y Yu , J Liu , Z Y Yang . Experimental study of needle–tissue interaction forces: effect of needle geometries, insertion methods and tissue characteristics. Journal of Biomechanics, 2014, 47(13): 3344–3353
https://doi.org/10.1016/j.jbiomech.2014.08.007
26 R A de la Torre , S L Bachman , A A Wheeler , K N Bartow , J S Scott . Hemostasis and hemostatic agents in minimally invasive surgery. Surgery, 2007, 142(4): S39–S45
https://doi.org/10.1016/j.surg.2007.06.023
27 B Balakrishnan , D Soman , U Payanam , A Laurent , D Labarre , A Jayakrishnan . A novel injectable tissue adhesive based on oxidized dextran and chitosan. Acta Biomaterialia, 2017, 53: 343–354
https://doi.org/10.1016/j.actbio.2017.01.065
28 A J Tompeck , A U R Gajdhar , M Dowling , S B Johnson , P S Barie , R J Winchell , D King , T M Scalea , L D Britt , M Narayan . A comprehensive review of topical hemostatic agents: the good, the bad, and the novel. Journal of Trauma and Acute Care Surgery, 2020, 88(1): e1–e21
https://doi.org/10.1097/TA.0000000000002508
29 P R Stauffer , F Rossetto , M Prakash , D G Neuman , T Lee . Phantom and animal tissues for modelling the electrical properties of human liver. International Journal of Hyperthermia, 2003, 19(1): 89–101
https://doi.org/10.1080/0265673021000017064
30 F J Carter , T G Frank , P J Davies , D McLean , A Cuschieri . Measurements and modelling of the compliance of human and porcine organs. Medical Image Analysis, 2001, 5(4): 231–236
https://doi.org/10.1016/S1361-8415(01)00048-2
31 A Wineman . Nonlinear viscoelastic solids—a review. Mathematics and Mechanics of Solids, 2009, 14(3): 300–366
https://doi.org/10.1177/1081286509103660
32 J Yang , L T Yu , L Wang , W J Wang , J W Cui . The estimation method of friction in unconfined compression tests of liver tissue. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232(6): 573–587
https://doi.org/10.1177/0954411918774377
33 S J Estermann , D H Pahr , A Reisinger . Hyperelastic and viscoelastic characterization of hepatic tissue under uniaxial tension in time and frequency domain. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112: 104038
https://doi.org/10.1016/j.jmbbm.2020.104038
34 L Li , A Maccabi , A Abiri , Y Y Juo , W Y Zhang , Y J Chang , G N Saddik , L H Jin , W S Grundfest , E P Dutson , J D Eldredge , P Benharash , R N Candler . Characterization of perfused and sectioned liver tissue in a full indentation cycle using a visco-hyperelastic model. Journal of the Mechanical Behavior of Biomedical Materials, 2019, 90: 591–603
https://doi.org/10.1016/j.jmbbm.2018.11.006
35 D Liu , G Y Li , C Su , Y Zheng , Y X Jiang , L X Qian , Y P Cao . Effect of ligation on the viscoelastic properties of liver tissues. Journal of Biomechanics, 2018, 76: 235–240
https://doi.org/10.1016/j.jbiomech.2018.05.018
36 Y Zheng , Y X Jiang , Y P Cao . A porohyperviscoelastic model for the shear wave elastography of the liver. Journal of the Mechanics and Physics of Solids, 2021, 150: 104339
https://doi.org/10.1016/j.jmps.2021.104339
37 W Nafo , A Al-Mayah . Measuring the hyperelastic response of porcine liver tissues in-vitro using controlled cavitation rheology. Experimental Mechanics, 2021, 61(2): 445–458
https://doi.org/10.1007/s11340-020-00674-6
38 P Pasyar , S Masjoodi , Z Montazeriani , B Makkiabadi . A digital viscoelastic liver phantom for investigation of elastographic measurements. Computers in Biology and Medicine, 2020, 127: 104078
https://doi.org/10.1016/j.compbiomed.2020.104078
39 Z Matin , M Moghimi Zand , M Salmani Tehrani , B R Wendland , R Dargazany . A visco-hyperelastic constitutive model of short- and long-term viscous effects on isotropic soft tissues. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(1): 3–17
https://doi.org/10.1177/0954406219875771
40 Y D Zhang , B Li , L P Yuan . Study on the control method and optimization experiment of prostate soft tissue puncture. IEEE Access: Practical Innovations, Open Solutions, 2020, 8: 218621–218643
https://doi.org/10.1109/ACCESS.2020.3041370
41 R J Roesthuis, van Y R J Veen, A Jahya, S Misra. Mechanics of needle-tissue interaction. In: Proceedings of 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Francisco: IEEE, 2011, 2557–2563
42 A D R Li , J Plott , L Chen , J S Montgomery , A Shih . Needle deflection and tissue sampling length in needle biopsy. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 104: 103632
https://doi.org/10.1016/j.jmbbm.2020.103632
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed