Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2023, Vol. 18 Issue (2): 27   https://doi.org/10.1007/s11465-022-0743-x
  本期目录
Cusp points and assembly changing motions in the PRR-PR-PRR planar parallel manipulator
Chengwei SHEN, Jingjun YU, Xu PEI()
School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China
 全文: PDF(4330 KB)   HTML
Abstract

Most parallel manipulators have multiple solutions to the direct kinematic problem. The ability to perform assembly changing motions has received the attention of a few researchers. Cusp points play an important role in the kinematic behavior. This study investigates the cusp points and assembly changing motions in a two degrees of freedom planar parallel manipulator. The direct kinematic problem of the manipulator yields a quartic polynomial equation. Each root in the equation determines the assembly configuration, and four solutions are obtained for a given set of actuated joint coordinates. By regarding the discriminant of the repeated roots of the quartic equation as an implicit function of two actuated joint coordinates, the direct kinematic singularity loci in the joint space are determined by the implicit function. Cusp points are then obtained by the intersection of a quadratic curve and a cubic curve. Two assembly changing motions by encircling different cusp points are highlighted, for each pair of solutions with the same sign of the determinants of the direct Jacobian matrices.

Key wordsplanar parallel manipulator    assembly changing motions    cusp points    quartic polynomial    discriminant of repeated roots
收稿日期: 2022-07-19      出版日期: 2023-06-16
Corresponding Author(s): Xu PEI   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2023, 18(2): 27.
Chengwei SHEN, Jingjun YU, Xu PEI. Cusp points and assembly changing motions in the PRR-PR-PRR planar parallel manipulator. Front. Mech. Eng., 2023, 18(2): 27.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-022-0743-x
https://academic.hep.com.cn/fme/CN/Y2023/V18/I2/27
Fig.1  
Fig.2  
ParameterValue
b12
b21
l15/2
l21
p2/5
απ/9
Tab.1  
Solutionφ/radh
A0.67330.9696
B3.00000.4831
C3.8400?0.3009
D5.0531?0.6005
Tab.2  
Fig.3  
Fig.4  
No.pα/rad
10.6718?2.3041
20.6718?0.8375
30.67180.8375
40.67182.3041
5?0.6718?2.3041
6?0.6718?0.8375
7?0.67180.8375
8?0.67182.3041
Tab.3  
Configuration|JDKP|
A?7.4769
B3.2026
C?2.3237
D3.9718
Tab.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
b1, b2, l1, l2Geometric parameters of the manipulator under study
CiCoefficient of the quartic polynomial equation
fiConstraint equation of a non-redundant manipulator
gReduced configuration space of a non-redundant manipulator
h, φPose coordinates of the moving platform of the manipulator under study
I, JRedefined variables of the quartic polynomial equation
JDKPDirect Jacobian matrix
JIKPInverse Jacobian matrix
p, αActuated joint coordinates of the manipulator under study
P, λRedefined unknown variables
qDirect kinematic singularity loci in the joint space of a non-redundant manipulator
t1, t2Output variables for a non-redundant manipulator
uTangent-half-angle of φ
ρ1, ρ2Input variables for a non-redundant manipulator
ΔQuartic discriminant
  
1 J Sun , L Shao , L F Fu , X Y Han , S H Li . Kinematic analysis and optimal design of a novel parallel pointing mechanism. Aerospace Science and Technology, 2020, 104: 105931
https://doi.org/10.1016/j.ast.2020.105931
2 W X Zhang , W Zhang , X L Ding , L Sun . Optimization of the rotational asymmetric parallel mechanism for hip rehabilitation with force transmission factors. Journal of Mechanisms and Robotics, 2020, 12(4): 041006
https://doi.org/10.1115/1.4045847
3 J P Merlet . Direct kinematics and assembly modes of parallel manipulators. The International Journal of Robotics Research, 1992, 11(2): 150–162
https://doi.org/10.1177/027836499201100205
4 K H Hunt . Structural kinematics of in-parallel-actuated robot-arms. Journal of Mechanisms, Transmissions, and Automation in Design, 1983, 105(4): 705–712
https://doi.org/10.1115/1.3258540
5 C Innocenti , V Parenti-Castelli . Singularity-free evolution from one configuration to another in serial and fully-parallel manipulators. Journal of Mechanical Design, 1998, 120(1): 73–79
https://doi.org/10.1115/1.2826679
6 P Wenger, D Chablat. Workspace and assembly modes in fully-parallel manipulators: a descriptive study. In: Lenarčič J, Husty M L, eds. Advances in Robot Kinematics: Analysis and Control. Dordrecht: Springer, 1998, 117–126
7 E J Haug . Parallel manipulator domains of singularity free functionality. Mechanics Based Design of Structures and Machines, 2021, 49(5): 615–639
https://doi.org/10.1080/15397734.2020.1728547
8 X W Kong . Classification of 3-degree-of-freedom 3-UPU translational parallel mechanisms based on constraint singularity loci using Gröbner cover. Journal of Mechanisms and Robotics, 2022, 14(4): 041010
https://doi.org/10.1115/1.4054307
9 O Altuzarra , V Petuya , M Urízar , A Hernández . Design procedure for cuspidal parallel manipulators. Mechanism and Machine Theory, 2011, 46(2): 97–111
https://doi.org/10.1016/j.mechmachtheory.2010.10.005
10 A Peidró , A García-Martínez , J M Marín , L Payá , A Gil , O Reinoso . Design of a mobile binary parallel robot that exploits nonsingular transitions. Mechanism and Machine Theory, 2022, 171: 104733
https://doi.org/10.1016/j.mechmachtheory.2022.104733
11 P R McAree , R W Daniel . An explanation of never-special assembly changing motions for 3-3 parallel manipulators. The International Journal of Robotics Research, 1999, 18(6): 556–574
https://doi.org/10.1177/02783649922066394
12 M Zein , P Wenger , D Chablat . Non-singular assembly-mode changing motions for 3-RPR parallel manipulators. Mechanism and Machine Theory, 2008, 43(4): 480–490
https://doi.org/10.1016/j.mechmachtheory.2007.03.011
13 A Hernandez , O Altuzarra , V Petuya , E Macho . Defining conditions for nonsingular transitions between assembly modes. IEEE Transactions on Robotics, 2009, 25(6): 1438–1447
https://doi.org/10.1109/TRO.2009.2030229
14 F DallaLibera , H Ishiguro . Non-singular transitions between assembly modes of 2-DOF planar parallel manipulators with a passive leg. Mechanism and Machine Theory, 2014, 77: 182–197
https://doi.org/10.1016/j.mechmachtheory.2014.02.014
15 M L Husty. Non-singular assembly mode change in 3-RPR-parallel manipulators. In: Kecskeméthy A, Müller A, eds. Computational Kinematics. Berlin: Springer, 2009, 51–60
16 S Caro, P Wenger, D Chablat. Non-singular assembly mode changing trajectories of a 6-DOF parallel robot. In: Proceedings of ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Chicago: ASME, 2012, 1245–1254
17 M Husty, J Schadlbauer, S Caro, P Wenger. The 3-RPS manipulator can have non-singular assembly-mode changes. In: Thomas F, Perez Gracia A, eds. Computational Kinematics. Dordrecht: Springer, 2014, 339–348
18 E Macho , V Petuya , O Altuzarra , A Hernandez . Planning nonsingular transitions between solutions of the direct kinematic problem from the joint space. Journal of Mechanisms and Robotics, 2012, 4(4): 041005
https://doi.org/10.1115/1.4007306
19 H Bamberger , A Wolf , M Shoham . Assembly mode changing in parallel mechanisms. IEEE Transactions on Robotics, 2008, 24(4): 765–772
https://doi.org/10.1109/TRO.2008.926863
20 A Peidró , Marín J María , A Gil , Ó Reinoso . Performing nonsingular transitions between assembly modes in analytic parallel manipulators by enclosing quadruple solutions. Journal of Mechanical Design, 2015, 137(12): 122302
https://doi.org/10.1115/1.4031653
21 M Coste, D Chablat, P Wenger. Nonsingular change of assembly mode without any cusp. In: Lenarčič J, Khatib O, eds. Advances in Robot Kinematics. Cham: Springer, 2014, 105–112
22 M Coste, P Wenger, D Chablat. Hidden cusps. In: Lenarčič J, Merlet J P, eds. Advances in Robot Kinematics 2016. Cham: Springer, 2018, 129–138
23 G Moroz , F Rouiller , D Chablat , P Wenger . On the determination of cusp points of 3-RPR parallel manipulators. Mechanism and Machine Theory, 2010, 45(11): 1555–1567
https://doi.org/10.1016/j.mechmachtheory.2010.06.016
24 M Manubens , G Moroz , D Chablat , P Wenger , F Rouillier . Cusp points in the parameter space of degenerate 3-RPR planar parallel manipulators. Journal of Mechanisms and Robotics, 2012, 4(4): 041003
https://doi.org/10.1115/1.4006921
25 F Thomas . A distance geometry approach to the singularity analysis of 3R robots. Journal of Mechanisms and Robotics, 2016, 8(1): 011001
https://doi.org/10.1115/1.4029500
26 D H Salunkhe , C Spartalis , J Capco , D Chablat , P Wenger . Necessary and sufficient condition for a generic 3R serial manipulator to be cuspidal. Mechanism and Machine Theory, 2022, 171: 104729
https://doi.org/10.1016/j.mechmachtheory.2022.104729
27 D Salunkhe, J Capco, D Chablat, P Wenger. Geometry based analysis of 3R serial robots. In: Altuzarra O, Kecskeméthy A, eds. Advances in Robot Kinematics 2022. Cham: Springer, 2022, 65–72
28 D Kohli , J Spanos . Workspace analysis of mechanical manipulators using polynomial discriminants. Journal of Mechanisms, Transmissions, and Automation in Design, 1985, 107(2): 209–215
https://doi.org/10.1115/1.3258710
29 K J Waldron , K H Hunt . Series-parallel dualities in actively coordinated mechanisms. The International Journal of Robotics Research, 1991, 10(5): 473–480
https://doi.org/10.1177/027836499101000503
30 H Iqbal , M U A Khan , B J Yi . Analysis of duality-based interconnected kinematics of planar serial and parallel manipulators using screw theory. Intelligent Service Robotics, 2020, 13(1): 47–62
https://doi.org/10.1007/s11370-019-00294-7
31 E Macho, O Altuzarra, C Pinto, A Hernandez. Transitions between multiple solutions of the direct kinematic problem. In: Lenarčič J, Wenger P, eds. Advances in Robot Kinematics: Analysis and Design. Dordrecht: Springer, 2008, 301–310
32 O Bohigas , M E Henderson , L Ros , M Manubens , J M Porta . Planning singularity-free paths on closed-chain manipulators. IEEE Transactions on Robotics, 2013, 29(4): 888–898
https://doi.org/10.1109/TRO.2013.2260679
33 M Urízar , V Petuya , O Altuzarra , E Macho , A Hernández . Computing the configuration space for tracing paths between assembly modes. Journal of Mechanisms and Robotics, 2010, 2(3): 031002
https://doi.org/10.1115/1.4001734
34 F Thomas, P Wenger. On the topological characterization of robot singularity loci. A catastrophe-theoretic approach. In: Proceedings of 2011 IEEE International Conference on Robotics and Automation. Shanghai: IEEE, 2011, 3940–3945
35 W S Burnside, A W Panton. The Theory of Equations: With an Introduction to the Theory of Binary Algebraic Forms. 3rd ed. Dublin: Hodges, Figgis and Co., Ltd., 1892
36 J F Blinn . Quartic discriminants and tensor invariants. IEEE Computer Graphics and Applications, 2002, 22(2): 86–91
https://doi.org/10.1109/38.988750
37 K Arikawa . Kinematic analysis of mechanisms based on parametric polynomial system: basic concept of a method using Gröbner cover and its application to planar mechanisms. Journal of Mechanisms and Robotics, 2019, 11(2): 020906
https://doi.org/10.1115/1.4042475
38 C Gosselin , J Angeles . Singularity analysis of closed-loop kinematic chains. IEEE Transactions on Robotics and Automation, 1990, 6(3): 281–290
https://doi.org/10.1109/70.56660
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed