Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2024, Vol. 19 Issue (2): 11   https://doi.org/10.1007/s11465-024-0782-6
  本期目录
Small tracking error correction for moving targets of intelligent electro-optical detection systems
Cheng SHEN, Zhijie WEN(), Wenliang ZHU, Dapeng FAN, Mingyuan LING
College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China
 全文: PDF(6730 KB)   HTML
Abstract

Small tracking error correction for electro-optical systems is essential to improve the tracking precision of future mechanical and defense technology. Aerial threats, such as “low, slow, and small (LSS)” moving targets, pose increasing challenges to society. The core goal of this work is to address the issues, such as small tracking error correction and aiming control, of electro-optical detection systems by using mechatronics drive modeling, composite velocity–image stability control, and improved interpolation filter design. A tracking controller delay prediction method for moving targets is proposed based on the Euler transformation model of a two-axis, two-gimbal cantilever beam coaxial configuration. Small tracking error formation is analyzed in detail to reveal the scientific mechanism of composite control between the tracking controller’s feedback and the motor’s velocity–stability loop. An improved segmental interpolation filtering algorithm is established by combining line of sight (LOS) position correction and multivariable typical tracking fault diagnosis. Then, a platform with 2 degrees of freedom is used to test the system. An LSS moving target shooting object with a tracking distance of S = 100 m, target board area of A = 1 m2, and target linear velocity of v = 5 m/s is simulated. Results show that the optimal method’s distribution probability of the tracking error in a circle with a radius of 1 mrad is 66.7%, and that of the traditional method is 41.6%. Compared with the LOS shooting accuracy of the traditional method, the LOS shooting accuracy of the optimized method is improved by 37.6%.

Key wordselectro-optical detection system    small tracking error    moving target    visual servo    aiming control
收稿日期: 2023-09-10      出版日期: 2024-05-30
Corresponding Author(s): Zhijie WEN   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2024, 19(2): 11.
Cheng SHEN, Zhijie WEN, Wenliang ZHU, Dapeng FAN, Mingyuan LING. Small tracking error correction for moving targets of intelligent electro-optical detection systems. Front. Mech. Eng., 2024, 19(2): 11.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-024-0782-6
https://academic.hep.com.cn/fme/CN/Y2024/V19/I2/11
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Parameter Value
Resistance R 1.03 Ω
d-axis inductance Ld 0.0013 H
q-axis inductance Lq 0.0013 H
Number of motor poles Pn 10
Magnetic linkage ψf 0.055 Wb
Sampling time Ts 0.0001 s
Tab.1  
Parameter Value
Velocity-loop proportional coefficient kP 0.700
Velocity-loop integration coefficient kI 0.045
Velocity-loop differential coefficient kD 0
Position-loop proportional coefficient kpa 19.500
Position-loop integration coefficient kia 0
Unit step signal starting time t 0.050 s
Unit step signal duration T1 0.500 s
Sinusoidal response signal frequency f 1 Hz
Sinusoidal response signal amplitude
Sinusoidal response signal duration T2 3 s
Tab.2  
Fig.11  
Method Overshoot/% Adjustment time/s
Traditional PID 6.0 0.325
Improved Lagrange 0.5 0.145
Tab.3  
Fig.12  
Method Tracking error at the startup stage, y/(° ) Tracking error at the commutation stage, a/(° ) Tracking error at the commutation stage, b/(° )
Traditional PID 0.33 0.31 −0.31
Improved Lagrange 0.30 0.08 −0.08
Tab.4  
Fig.13  
Parameter Value
EODS resolution 1280 × 720
EODS FOV angle 3.6125° × 2.034°
Target manipulator angular velocity ω −30 °/s to 30 °/s
Target manipulator rod length Lo 1.6 m
Target manipulator deceleration ratio Kk 30
Tracking distance S 100 m
Tab.5  
Fig.14  
Fig.15  
Abbreviations
BLDC Brushless direct-current motor
DOF Degree of freedom
EODS Electro-optical detection system
FOV Field of view
LOS Line of sight
LSS Low, slow, and small
MD Miss distance
PID Proportional–integral–differential
Variables
A Target board area
B Viscous friction coefficient of the motor
E Counter-electromotive force
Ea Material elastic modulus
e Counter-electromotive force
ea, eb, ec Counter-electromotive force of each phase winding
F Constant force
f Sinusoidal response signal frequency
G (t) Intermediate function
G qs (s) Current-loop delay
G fe (s) Delay compensator
G ka (s) Position-loop delay
GLag (s) Improved Lagrange interpolation compensator
Go (z) Compensate function
Goc (s), Gcc (s) Transfer functions of the open and closed loops
Gop (s) Open-loop transfer function of the position-loop
G ope (s) Open-loop transfer function of the current-loop
G PIa (s) Position-loop controller
Gov (s) Open-loop transfer function of the velocity-loop
G PIb (s) Velocity-loop controller
G PIe (s) Current-loop controller
Gpr (s) Closed-loop transfer function of the position-loop
Gs (s) Transfer function
G sb (s) Velocity-loop delay
G se (s) Current-loop controlled object
GTrack Image tracker
GT (s) Electromagnetic torque
G ZOHa (s) Zero-order hold
Gθ (s) Controller of the position loop
Gω (s), GFF (s), GI (s) Controllers of the velocity loop
I Material cross-sectional moment of inertia
I (s) Current function
ia, ib, ic Current of each phase winding
id, iq Current of the dq axis
if Current
J Moment of inertia
K Free quantity
Ke Coefficient of counter-electromotive force
Kk Target manipulator deceleration ratio
Ko, Kδ, Kw Conversion coefficient
KN Coefficient of pulse conversion
KV, KI, Kω, Kθ Coefficients of visual servo
kP, kI, kD Coefficients of the velocity-loop controller
kp, ki, kd Coefficients of the current-loop controller
k pa, k ia, k qa Coefficients of the position-loop controller
L Stator inductance
L (x) Interpolation function
Ld, Lq Inductance of the dq axis
Ln (x) Lagrange interpolation polynomial
Lo Target manipulator rod length
l Length of the beam
li Length of the ith structure
Lk (x) Interpolation basis function
M Coil mutual inductance of each phase winding
M (x) The function of bending moment
Ma Bending moment
M × N Resolution
{mn, mn+1, ..., mn+4} Dataset of miss distance
N Interpolation step size
n Stepper motor speed
n0 Speed output of the decelerator
OA Line of sight line
OB Fire line
Oa, Ob Reference axis of the calibration tool
P The stress on the beam
Pn Number of motor poles
q Uniformly distributed load
R Stator resistance
s Differential module
S Tracking distance
ds Differential arc of a cantilever beam
T Sampling time
T1 Unit step signal duration
T2 Sinusoidal response signal duration
Td, Tf, Tk, Tb Constant of delay time
Te, TL Electromagnetic torque and load torque
Ts Sampling period of the encoder
t Unit step signal starting time
U (s) Voltage function
u Voltage
ua, ub, uc Voltage of each phase winding
ud, uq Voltage of the dq axis
v Linear velocity
w Deflection curve
wmax Maximum deflection
X (t) Sampling value
x Displacement
x0, x1, ..., xn Independent variables
Y Feedback coordinate
y0, y1, ..., yn Function values
ya1 Section deflection
yα1, yα2, yα3, yα4 Deflection distance
yβ1, yβ2, yβ3, yβ4 Total deflection distance
z A variable after the difference transformation
α Adjustment coefficient
β1, β2 Orthogonal decomposition distances
ψ Total flux of each phase winding
ψa, ψb, ψc Flux linkage of each phase winding
ψf Magnetic linkage of the permanent magnet
ψm Rotor permanent magnet flux
ψ sejθ s Flux components of each phase winding
θ Offset angle
θ* Output control instruction
θα1(lx) Offset angle of section A
θe Relative angle
θmax Maximum offset angle
ρ Curvature radius
δ1, δ3 Calibration deviation
δ2 Vertical distance
δmax Calibration error
|δ|, δx, δy Shooting accuracy judgment threshold
|δ| Tracking error
ε Stability coefficient of the closed loop
τI Integral time constant of the velocity loop
τi Integral time constant of the current loop
ω Target manipulator angular velocity
ωe Electrical angular velocity
ωr Angular velocity
(x, y) Target pixel coordinate
x, Δy) Pixel distance
(θM, θN) Angle of the lens
(θx, θy) Miss distance
(α, β) Output pulse of the motor
(w/2,h/2) Center of the lens
  
1 A Mazurkiewicz. The Russia-Ukraine war of 2022: faces of modern conflict. Journal of Contemporary European Studies, 2023, 31(4): 1507–1508
https://doi.org/10.1080/14782804.2023.2213941
2 Q R Hu, X Y Shen, X M Qian, G Y Huang, M Q Yuan. The personal protective equipment (PPE) based on individual combat: a systematic review and trend analysis. Defence Technology, 2023, 28: 195–221
https://doi.org/10.1016/j.dt.2022.12.007
3 Q H Huang, G W Jin, X Xiong, H Ye, Y Z Xie. Monitoring urban change in conflict from the perspective of optical and SAR satellites: the case of Mariupol, a city in the conflict between RUS and UKR. Remote Sensing, 2023, 15(12): 3096
https://doi.org/10.3390/rs15123096
4 S Alhaji Musa, R S A Raja Abdullah, A Sali, A Ismail, N E Abdul Rashid. Low-slow-small (LSS) target detection based on micro Doppler analysis in forward scattering radar geometry. Sensors, 2019, 19(15): 3332
https://doi.org/10.3390/s19153332
5 J Rasol, Y L Xu, Z X Zhang, F Zhang, W J Feng, L H Dong, T Hui, C Y Tao. An adaptive adversarial patch-generating algorithm for defending against the intelligent low, slow, and small target. Remote Sensing, 2023, 15(5): 1439
https://doi.org/10.3390/rs15051439
6 Y L Chang, D Li, Y L Gao, Y Su, X Q Jia. An improved YOLO model for UAV fuzzy small target image detection. Applied Sciences, 2023, 13(9): 5409
https://doi.org/10.3390/app13095409
7 D Lin, Y M Wu. Tracing and implementation of IMM Kalman filtering feed-forward compensation technology based on neural network. Optik, 2020, 202: 163574
https://doi.org/10.1016/j.ijleo.2019.163574
8 Y F Lu, D P Fan, Z Y Zhang. Theoretical and experimental determination of bandwidth for a two-axis fast steering mirror. Optik, 2013, 124(16): 2443–2449
https://doi.org/10.1016/j.ijleo.2012.08.023
9 B Han, H Wang, X Luo, C Y Liang, X Yang, S Liu, Y C Lin. Turbidity-adaptive underwater image enhancement method using image fusion. Frontiers of Mechanical Engineering, 2022, 17(3): 13
https://doi.org/10.1007/s11465-021-0669-8
10 H S Li, X Q Zhang. Three-dimensional coordinates test method with uncertain projectile proximity explosion position based on dynamic seven photoelectric detection screen. Defence Technology, 2022, 18(9): 1643–1652
https://doi.org/10.1016/j.dt.2021.07.012
11 Y P Yin, Y Zhao, Y G Xiao, F Gao. Footholds optimization for legged robots walking on complex terrain. Frontiers of Mechanical Engineering, 2023, 18(2): 26
https://doi.org/10.1007/s11465-022-0742-y
12 C Shen, Z J Wen, W L Zhu, D P Fan, Y K Chen, Z Zhang. Prediction and control of small deviation in the time-delay of the image tracker in an intelligent electro-optical detection system. Actuators, 2023, 12(7): 296
https://doi.org/10.3390/act12070296
13 D Corriveau. Validation of the NATO armaments ballistic Kernel for use in small-arms fire control systems. Defence Technology, 2017, 13(3): 188–199
https://doi.org/10.1016/j.dt.2017.04.006
14 M Asad, S Khan, Z Ihsanullah, Y F Mehmood, S A Shi, U Memon. A split target detection and tracking algorithm for ballistic missile tracking during the re-entry phase. Defence Technology, 2020, 16(6): 1142–1150
https://doi.org/10.1016/j.dt.2019.12.008
15 H Liu, D P Fan, S P Li, Q K Zhou. Design and analysis of a novel electric firing mechanism for sniper rifles. Acta Armamentarii, 2016, 37(6): 1111–1116
https://doi.org/10.3969/j.issn.1000-1093.2016.06.020
16 K S H Chin, A C Y Siu, S Y K Ying, Y F Zhang. Da jiang innovation, DJI: the future of possible. Academy of Asian Business Review, 2017, 3(2): 83–109
https://doi.org/10.26816/aabr.3.2.201712.83
17 B H Sheu, C C Chiu, W T Lu, C I Huang, W P Chen. Development of UAV tracing and coordinate detection method using a dual-axis rotary platform for an anti-UAV system. Applied Sciences, 2019, 9(13): 2583
https://doi.org/10.3390/app9132583
18 D H Huang, Z F Zhou, Z Z Zhang, M Zhu, R W Peng, Y Zhang, Q X Li, D N Xiao, L W Hu. Extraction of agricultural plastic film mulching in karst fragmented arable lands based on unmanned aerial vehicle visible light remote sensing. Journal of Applied Remote Sensing, 2022, 16(3): 036511
https://doi.org/10.1117/1.JRS.16.036511
19 Y Liu, P Sun, N Wergeles, Y Shang. A survey and performance evaluation of deep learning methods for small object detection. Expert Systems with Applications, 2021, 172: 114602
https://doi.org/10.1016/j.eswa.2021.114602
20 M M Lyu, R Z Liu, Y L Hou, Q Gao, L Wang. A target motion filtering method for on-axis control of electro-optical tracking platform. Acta Armamentarii, 2019, 40(3): 548–554
https://doi.org/10.3969/j.issn.1000-1093.2019.03.013
21 M M Lyu, R M Hou, Y F Ke, Y L Hou. Compensation method for miss distance time-delay of electro-optical tracking platform. Journal of Xi’an jiaotong university, 2019, 53(11): 141–147
https://doi.org/10.7652/xjtuxb201911020
22 Z J Wen, Y Ding, P K Liu, H Ding. Direct integration method for time-delayed control of second-order dynamic systems. Journal of Dynamic Systems, Measurement, and Control, 2017, 139(6): 061001
https://doi.org/10.1115/1.4035359
23 S Yoo, T Kim, M Seo, J Oh, H S Kim, T Seo. Position-tracking control of dual-rope winch robot with rope slip compensation. IEEE/ASME Transactions on Mechatronics, 2021, 26(4): 1754–1762
https://doi.org/10.1109/TMECH.2021.3075999
24 J Li, J Z Wang, S K Wang. A novel method of fast dynamic optical image stabilization precision measurement based on CCD. Optik, 2011, 122(7): 582–585
https://doi.org/10.1016/j.ijleo.2010.04.014
25 A Mondal. Occluded object tracking using object-background prototypes and particle filter. Applied Intelligence, 2021, 51(8): 5259–5279
https://doi.org/10.1007/s10489-020-02047-x
26 F Tokuda, S Arai, K Kosuge. Convolutional neural network-based visual servoing for eye-to-hand manipulator. IEEE Access, 2021, 9: 91820–91835
https://doi.org/10.1109/ACCESS.2021.3091737
27 S S Yuan, W X Deng, J Y Yao, G L Yang. Robust adaptive precision motion control of tank horizontal stabilizer based on unknown actuator backlash compensation. Defence Technology, 2023, 20: 72–83
https://doi.org/10.1016/j.dt.2022.09.002
28 M A Rafique, A F Lynch. Output-feedback image-based visual servoing for multirotor unmanned aerial vehicle line following. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(4): 3182–3196 10.1109/TAES.2020.2967851
29 H Zhong, Y A Wang, Z Q Miao, L Li, S W Fan, H Zhang. A homography-based visual servo control approach for an underactuated unmanned aerial vehicle in GPS-denied environment. IEEE Transactions on Intelligent Vehicles, 2023, 8(2): 1119–1129
https://doi.org/10.1109/TIV.2022.3163315
30 K W Zhang, Y Shi, H Y Sheng. Robust nonlinear model predictive control based visual servoing of quadrotor UAVs. IEEE/ASME Transactions on Mechatronics, 2021, 26(2): 700–708
https://doi.org/10.1109/TMECH.2021.3053267
31 M Bakthavatchalam, O Tahri, F Chaumette. A direct dense visual servoing approach using photometric moments. IEEE Transactions on Robotics, 2018, 34(5): 1226–1239
https://doi.org/10.1109/TRO.2018.2830379
32 X K Lin, X Wang, L Li. Intelligent detection of edge inconsistency for mechanical workpiece by machine vision with deep learning and variable geometry. Applied Intelligence, 2020, 50(7): 2105–2119
https://doi.org/10.1007/s10489-020-01641-3
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed