Please wait a minute...
Frontiers of Mechanical Engineering

ISSN 2095-0233

ISSN 2095-0241(Online)

CN 11-5984/TH

邮发代号 80-975

2019 Impact Factor: 2.448

Frontiers of Mechanical Engineering  2024, Vol. 19 Issue (3): 17   https://doi.org/10.1007/s11465-024-0787-1
  本期目录
3D-printed self-healing, biodegradable materials and their applications
Yu LI1,2,3, Guangmeng MA1,2,3, Fawei GUO1,2,3, Chunyi LUO2,3, Han WU2,3, Xin LUO2,3, Mingtao ZHANG1,2,3, Chenyun WANG4,5, Qingxin JIN1,2,3, Yu LONG1,2,3()
1. School of Mechanical Engineering, Guangxi University, Nanning 530004, China
2. State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, Guangxi University, Nanning 530004, China
3. Institute of Laser Intelligent Manufacturing and Precision Processing, School of Mechanical Engineering, Guangxi University, Nanning 530004, China
4. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
5. State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
 全文: PDF(7300 KB)   HTML
Abstract

3D printing is a versatile technology capable of rapidly fabricating intricate geometric structures and enhancing the performance of flexible devices in comparison to conventional fabrication methods. However, 3D-printed devices are susceptible to failure as a result of minuscule structural impairments, thereby impacting their overall durability. The utilization of self-healing, biodegradable materials in 3D printing holds immense potential for increasing the longevity and safety of devices, thereby expanding the application prospects for such devices. Nevertheless, enhancing the self-repairing capability of devices and refining the 3D printing performance of self-healing materials are still considerable challenges that need to be addressed to achieve optimal outcomes. This paper reviews recent developments in the field of advancements in 3D printing using self-healing and biodegradable materials. First, it investigates self-healing and biodegradable materials that are compatible with 3D printing techniques, discussing their printability, material properties, and factors that influence print quality. Then, it explores practical applications of self-healing and biodegradable 3D printing technology in depth. Finally, it critically offers practical perspectives on this topic.

Key words3D printing    self-healing    biodegradable    soft materials    covalent bonds    non-covalent bonds
收稿日期: 2023-12-29      出版日期: 2024-07-01
Corresponding Author(s): Yu LONG   
 引用本文:   
. [J]. Frontiers of Mechanical Engineering, 2024, 19(3): 17.
Yu LI, Guangmeng MA, Fawei GUO, Chunyi LUO, Han WU, Xin LUO, Mingtao ZHANG, Chenyun WANG, Qingxin JIN, Yu LONG. 3D-printed self-healing, biodegradable materials and their applications. Front. Mech. Eng., 2024, 19(3): 17.
 链接本文:  
https://academic.hep.com.cn/fme/CN/10.1007/s11465-024-0787-1
https://academic.hep.com.cn/fme/CN/Y2024/V19/I3/17
Material Advantages Material defect Limitations in combination with 3D printing Existing efforts Refs.
Metals Strong mechanical properties; good electrical conductivity; good corrosion resistance High density; easily oxidized; large thermal expansion coefficient Limited variety of materials; slow production speed; limited surface quality; difficult to remove supporting structure Developing alloy materials, 3D printing technology, and post-processing technology [1,5?8]
Polymer materials Good biocompatibility; strong tensile and bending properties; low melting point Low mechanical properties and thermal stability; toxicity Limited variety of materials; limited stability Developing new materials and 3D printing technology [4,9,10]
Ceramics High hardness and temperature resistance; strong chemical corrosion resistance Very brittle Limited variety of materials; complex preparation and post-processing process; difficult formation Developing new materials, 3D printing technology, post-processing technology [4,11?13]
Composite materials Good performance designability and fatigue resistance Unpredictable damage; difficult to recycle Limited variety of materials, accuracy and stability, and interfacial compatibility Developing new material systems and 3D printing technology; interface compatibility improvement [4,14?16]
Nanophase materials Good mechanical properties, biocompatibility, and electrical performance High preparation cost; low inelasticity Limited variety of materials and structural stability Developing new material systems and 3D printing technology [16?18]
Tab.1  
Material 3D printing method Self-healing mechanism Self-healing efficiency Biodegradability conditions Biodegradation effeciency Ref.
N-acrolyoyl glycinamide, 1-vinyl-1,2,4-triazole DIW Hydrogen bond 90% Heat Reprocessable [41]
Adamantanes, β-cyclodextrin nanogels ? Host?guest interactions 85% Exposure to visible light (452 nm, 30 mW?cm−2) 64 h [42]
Isophorone diisocyanate, phenethyl isocyanate SLS Pyrazole urea bond 100% 120 °C and under a pressure of 10 MPa for 30 min Reprocessable [43]
Tetrabutylammonium bromide DIW Diels?Alder reactions 85% Pressure, heat Reprocessable [44]
2,3-Epoxypropyltrimethylamonium chloride, β-chitin Injectable Imine bond 100% Lysozyme 45 d [45]
Hydroxyl-terminated poly (1,4-butylene adipate), polycaprolactone diol ? Disulfide bond 97% pH = 14 8 d [46]
Modified β-cyclodextrin, modified adamantane, and gelatin methacryloyl DIW Host?guest interactions 80% Endothelial cell protease 3 d [47]
1,4-Butanediol, succinic acid, bis-imine compound ? Imine bond 100% Activated compos, (58 ± 2) °C 16.0%a), after 10 d; 66.2%a), after 38 d [48]
Polyethylene glycol, polycaprolactone diol, 4-aminophenyl disulfide ? Disulfide bond 97% Stir in phosphate buffered saline 7.96%b) [49]
Chitosan, trichosanthin, astragalus polysaccharide DIW ? ? Phosphate-buffered saline, pH = 12 87.88% ± 1.24% (on the 15th day) [50]
β-Chitin, 2,3-epoxypropyltrimethylammonium chloride Injectable Imine bond 100% Phosphate-buffered saline, lysozyme, 37 °C Hydrogels could not support shapes and collapsed (after 17 d of incubation) [51]
Tab.2  
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Abbreviations
Ad Adamantane
c-CNT Carboxylic carbon nanotube
DIW Direct ink writing
DLP Digital light processing
FDM Fused deposition modeling
GelMA Gelation methacryloyl
HGGelMA Host?guest gelatin methacryloyl
HGSM Host-guest supramolecule
NVP N-vinyl-2-pyrrolidone
PAA Polyacrylic acid
PPy Polypyrrole
SC Supercapacitor
SLA Stereophotography
SLS Selective laser sintering
TPP Two-photon polymerization
β-CD β-cyclodextrin
  
1 A A Elhadad, A Rosa-Sainz, R Cañete, E Peralta, B Begines, M Balbuena, A Alcudia, Y Torres. Applications and multidisciplinary perspective on 3D printing techniques: recent developments and future trends. Materials Science and Engineering R: Reports, 2023, 156: 100760
https://doi.org/10.1016/j.mser.2023.100760
2 M Layani, X F Wang, S Magdassi. Novel materials for 3D printing by photopolymerization. Advanced Materials, 2018, 30(41): 1706344
https://doi.org/10.1002/adma.201706344
3 Z Chen, J F Li, T Z Li, T J Fan, C L Meng, C Z Li, J L Kang, L X Chai, Y B Hao, Y X Tang, O A Al-Hartomy, S Wageh, A G Al-Sehemi, Z G Luo, J T Yu, Y H Shao, D F Li, S Feng, W J Liu, Y Q He, X P Ma, Z J Xie, H Zhang. A CRISPR/Cas12a-empowered surface plasmon resonance platform for rapid and specific diagnosis of the Omicron variant of SARS-CoV-2. National Science Review, 2022, 9(8): nwac104
https://doi.org/10.1093/nsr/nwac104
4 H Wu, W P Fahy, S Kim, H Kim, N Zhao, L Pilato, A Kafi, S Bateman, J H Koo. Recent developments in polymers/polymer nanocomposites for additive manufacturing. Progress in Materials Science, 2020, 111: 100638
https://doi.org/10.1016/j.pmatsci.2020.100638
5 J H Martin, B D Yahata, J M Hundley, J A Mayer, T A Schaedler, T M Pollock. 3D printing of high-strength aluminium alloys. Nature, 2017, 549(7672): 365–369
https://doi.org/10.1038/nature23894
6 H Sahasrabudhe, A Bandyopadhyay. In situ reactive multi-material Ti6Al4V-calcium phosphate-nitride coatings for bio-tribological applications. Journal of the Mechanical Behavior of Biomedical Materials, 2018, 85: 1–11
https://doi.org/10.1016/j.jmbbm.2018.05.020
7 N Kaufmann, M Imran, T M Wischeropp, C Emmelmann, S Siddique, F Walther. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Physics Procedia, 2016, 83: 918–926
https://doi.org/10.1016/j.phpro.2016.08.096
8 Ł Rakoczy, M Grudzień-Rakoczy, R Cygan, B Rutkowski, T Kargul, T Dudziak, E Rząd, O Milkovič, A Zielińska-Lipiec. Characterization of the as-cast microstructure and selected properties of the X-40 Co-based superalloy produced via lost-wax casting. Archives of Civil and Mechanical Engineering, 2022, 22(3): 143
https://doi.org/10.1007/s43452-022-00466-w
9 A C Weems, M M Pérez-Madrigal, M C Arno, A P Dove. 3D printing for the clinic: examining contemporary polymeric biomaterials and their clinical utility. Biomacromolecules, 2020, 21(3): 1037–1059
https://doi.org/10.1021/acs.biomac.9b01539
10 Z J Jia, X X Xu, D H Zhu, Y F Zheng. Design, printing, and engineering of regenerative biomaterials for personalized bone healthcare. Progress in Materials Science, 2023, 134: 101072
https://doi.org/10.1016/j.pmatsci.2023.101072
11 D Owen, J Hickey, A Cusson, O I Ayeni, J Rhoades, Y F Deng, Y Zhang, L M Wu, H Park, N Hawaldar, P P Raikar, Y Jung, J Zhang. 3D printing of ceramic components using a customized 3D ceramic printer. Progress in additive manufacturing, 2018, 3: 3–9
https://doi.org/10.1007/s40964-018-0037-3
12 D Graf, J Jung, T Hanemann. Formulation of a ceramic ink for 3D inkjet printing. Micromachines, 2021, 12(9): 1136
https://doi.org/10.3390/mi12091136
13 X M Wang, D Gao, F Su, Y T Zheng, X Li, Z Y Liu, C Y Liu, P Wang, D F Peng, Z W Chen. Photopolymerization 3D printing of luminescent ceramics. Additive Manufacturing, 2023, 73: 103695
https://doi.org/10.1016/j.addma.2023.103695
14 A N Dickson, K A Ross, D P Dowling. Additive manufacturing of woven carbon fibre polymer composites. Composite Structures, 2018, 206: 637–643
https://doi.org/10.1016/j.compstruct.2018.08.091
15 C I Idumah. Recent advancements in self-healing polymers, polymer blends, and nanocomposites. Polymers & Polymer Composites, 2021, 29(4): 246–258
https://doi.org/10.1177/0967391120910882
16 Z X Weng, J L Wang, T Senthil, L X Wu. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials & Design, 2016, 102: 276–283
https://doi.org/10.1016/j.matdes.2016.04.045
17 Z Chen, C S Wu, Y X Yuan, Z J Xie, T Z Li, H Huang, S Li, J F Deng, H L Lin, Z Shi, C Z Li, Y B Hao, Y X Tang, Y H You, O A Al-Hartomy, S Wageh, A G Al-Sehemi, R T Lu, L Zhang, X C Lin, Y Q He, G J Zhao, D F Li, H Zhang. CRISPR-Cas13a-powered electrochemical biosensor for the detection of the L452R mutation in clinical samples of SARS-CoV-2 variants. Journal of Nanobiotechnology, 2023, 21(1): 141
https://doi.org/10.1186/s12951-023-01903-5
18 F Zheng, Z Chen, J F Li, R Wu, B Zhang, G H Nie, Z J Xie, H Zhang. A highly sensitive CRISPR-empowered sSurface plasmon resonance sensor for diagnosis of inherited diseases with femtomolar-level real-time quantification. Advanced Science, 2022, 9(14): 2105231
https://doi.org/10.1002/advs.202105231
19 Y Yang, X c Ding, M W Urban. Chemical and physical aspects of self-healing materials. Progress in Polymer Science, 2015, 49–50: 34–59 10.1016/j.progpolymsci.2015.06.001
20 B Aïssa, D Therriault, E Haddad, W Jamroz. Self-healing materials systems: overview of major approaches and recent developed technologies. Advances in Materials Science and Engineering, 2012, 2012: 854203
https://doi.org/10.1155/2012/854203
21 A Heiden, D Preninger, L Lehner, M Baumgartner, M Drack, E Woritzka, D Schiller, R Gerstmayr, F Hartmann, M Kaltenbrunner. 3D printing of resilient biogels for omnidirectional and exteroceptive soft actuators. Science Robotics, 2022, 7(63): eabk2119
https://doi.org/10.1126/scirobotics.abk2119
22 Y C Wu, M Fei, T T Chen, C Li, S Y Wu, R H Qiu, W D Liu. Photocuring three-dimensional printing of thermoplastic polymers enabled by hydrogen bonds. ACS Applied Materials & Interfaces, 2021, 13(19): 22946–22954
https://doi.org/10.1021/acsami.1c02513
23 X P Li, R Yu, Y Y He, Y Zhang, X Yang, X J Zhao, W Huang. Self-healing polyurethane elastomers based on a disulfide Bond by digital light processing 3D printing. ACS Macro Letters, 2019, 8(11): 1511–1516
https://doi.org/10.1021/acsmacrolett.9b00766
24 M D Almutairi, A I Aria, V K Thakur, M A Khan. Self-healing mechanisms for 3D-printed polymeric structures: from lab to reality. Polymers, 2020, 12(7): 1534
https://doi.org/10.3390/polym12071534
25 T Jungst, W Smolan, K Schacht, T Scheibel, J Groll. Strategies and molecular design criteria for 3D printable hydrogels. Chemical Reviews, 2016, 116(3): 1496–1539
https://doi.org/10.1021/acs.chemrev.5b00303
26 D Chimene, R Kaunas, A K Gaharwar. Hydrogel bioink reinforcement for additive manufacturing: a focused review of emerging strategies. Advanced Materials, 2020, 32(1): 1902026
https://doi.org/10.1002/adma.201902026
27 J H Li, C T Wu, P K Chu, M Gelinsky. 3D printing of hydrogels: rational design strategies and emerging biomedical applications. Materials Science and Engineering R: Reports, 2020, 140: 100543
https://doi.org/10.1016/j.mser.2020.100543
28 G Ge, Q Wang, Y Z Zhang, H N Alshareef, X C Dong. 3D printing of hydrogels for stretchable ionotronic devices. Advanced Functional Materials, 2021, 31(52): 2107437
https://doi.org/10.1002/adfm.202107437
29 S Dadbakhsh, L Verbelen, T Vandeputte, D Strobbe, P Van Puyvelde, J P Kruth. Effect of powder size and shape on the SLS processability and mechanical properties of a TPU elastomer. Physics Procedia, 2016, 83: 971–980
https://doi.org/10.1016/j.phpro.2016.08.102
30 L Verbelen, S Dadbakhsh, M Van den Eynde, D Strobbe, J P Kruth, B Goderis, P Van Puyvelde. Analysis of the material properties involved in laser sintering of thermoplastic polyurethane. Additive Manufacturing, 2017, 15: 12–19
https://doi.org/10.1016/j.addma.2017.03.001
31 S Q Yuan, F Shen, J M Bai, C K Chua, J Wei, K Zhou. 3D soft auxetic lattice structures fabricated by selective laser sintering: TPU powder evaluation and process optimization. Materials & Design, 2017, 120: 317–327
https://doi.org/10.1016/j.matdes.2017.01.098
32 D Han, H Lee. Recent advances in multi-material additive manufacturing: methods and applications. Current Opinion in Chemical Engineering, 2020, 28: 158–166
https://doi.org/10.1016/j.coche.2020.03.004
33 S Wickramasinghe, T Do, P Tran. FDM-based 3D printing of polymer and associated composite: a review on mechanical properties, defects and treatments. Polymers, 2020, 12(7): 1529
https://doi.org/10.3390/polym12071529
34 D R Berry, K P Cortés-Guzmán, A Durand-Silva, S D Perera, A K Remy, Q Yan, R A Smaldone. Supramolecular tools for polymer additive manufacturing. MRS Communications, 2021, 11(2): 146–156
https://doi.org/10.1557/s43579-021-00037-9
35 Y Y Bao. Recent trends in advanced photoinitiators for vat photopolymerization 3D printing. Macromolecular Rapid Communications, 2022, 43(14): 2200202
https://doi.org/10.1002/marc.202200202
36 I Roppolo, M Caprioli, C F Pirri, S Magdassi. 3D printing of self-healing materials. Advanced Materials, 2024, 36(9): 2305537
https://doi.org/10.1002/adma.202305537
37 L Z Guan, J B Fan, X Y Chan, H Le Ferrand. Continuous 3D printing of microstructured multifunctional materials. Additive Manufacturing, 2023, 62: 103373
https://doi.org/10.1016/j.addma.2022.103373
38 Z H Li, Y Zhao, Z H Wang, M Ren, X G Wang, H Liu, Q Lin, J C Wang. Engineering multifunctional hydrogel-integrated 3D printed bioactive prosthetic interfaces for osteoporotic osseointegration. Advanced Healthcare Materials, 2022, 11(11): 2102535
https://doi.org/10.1002/adhm.202102535
39 N Ashammakhi, A L Hernandez, B D Unluturk, S A Quintero, N R de Barros, E Hoque Apu, A Bin Shams, S Ostrovidov, J Li, C Contag, A S Gomes, M Holgado. Biodegradable implantable sensors: materials design, fabrication, and applications. Advanced Functional Materials, 2021, 31(49): 2104149
40 V Bijalwan, S Rana, G J Yun, K P Singh, M Jamil, S Schlögl. 3D printing of covalent adaptable networks: overview, applications and future prospects. Polymer Reviews, 2024, 64(1): 36–79
https://doi.org/10.1080/15583724.2023.2227692
41 H B Wang, H Zhu, W G Fu, Y Y Zhang, B Xu, F Gao, Z Q Cao, W G Liu. A high strength self-healable antibacterial and anti-inflammatory supramolecular polymer hydrogel. Macromolecular Rapid Communications, 2017, 38(9): 1600695
https://doi.org/10.1002/marc.201600695
42 X H Li, H Z Zhang, P Zhang, Y Yu. A sunlight-degradable autonomous self-healing supramolecular elastomer for flexible electronic devices. Chemistry of Materials, 2018, 30(11): 3752–3758
https://doi.org/10.1021/acs.chemmater.8b00832
43 S J Sun, G X Fei, X R Wang, M Xie, Q F Guo, D H Fu, Z H Wang, H Wang, G X Luo, H S Xia. Covalent adaptable networks of polydimethylsiloxane elastomer for selective laser sintering 3D printing. Chemical Engineering Journal, 2021, 412: 128675
https://doi.org/10.1016/j.cej.2021.128675
44 T Y Yuan, L S Zhang, T Li, R W Tu, H A Sodano. 3D printing of a self-healing, high strength, and reprocessable thermoset. Polymer Chemistry, 2020, 11(40): 6441–6452
https://doi.org/10.1039/D0PY00819B
45 H Xu, L Zhang, J Cai. Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers. ACS Applied Bio Materials, 2019, 2(1): 196–204
https://doi.org/10.1021/acsabm.8b00548
46 F Li, Z Xu, H Hu, Z Kong, C Chen, Y Tian, W Zhang, W Ying, R Zhang, J Zhu. A polyurethane integrating self-healing, anti-aging and controlled degradation for durable and eco-friendly E-skin. Chemical Engineering Journal, 2021, 410: 128363
https://doi.org/10.1016/j.cej.2020.128363
47 K H Song, C B Highley, A Rouff, J A Burdick. Complex 3D-printed microchannels within cell-biodegradable hydrogels. Advanced Functional Materials, 2018, 28(31): 1801331
https://doi.org/10.1002/adfm.201801331
48 K Fukuda, M Shimoda, M Sukegawa, T Nobori, J M Lehn. Doubly degradable dynamers: dynamic covalent polymers based on reversible imine connections and biodegradable polyester units. Green Chemistry, 2012, 14(10): 2907–2911
https://doi.org/10.1039/c2gc35875a
49 J Wen, Z Y Jia, X P Zhang, M W Pan, J F Yuan, L Zhu. Tough, thermo-responsive, biodegradable and fast self-healing polyurethane hydrogel based on microdomain-closed dynamic bonds design. Materials Today Communications, 2020, 25: 101569
https://doi.org/10.1016/j.mtcomm.2020.101569
50 J X Yan, Y Wang, X Zhang, X L Zhao, J Z Ma, X Y Pu, Y G Wang, F Ran, Y L Wang, F F Leng, W J Zhang. Snakegourd root/astragalus polysaccharide hydrogel preparation and application in 3D printing. International Journal of Biological Macromolecules, 2019, 121: 309–316
https://doi.org/10.1016/j.ijbiomac.2018.10.008
51 H Xu, L Zhang, J Cai. Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers. ACS Applied Bio Materials, 2019, 2(1): 196–204
https://doi.org/10.1021/acsabm.8b00548
52 T Jungst, W Smolan, K Schacht, T Scheibel, J Groll. Strategies and molecular design criteria for 3D printable hydrogels. Chemical Reviews, 2016, 116(3): 1496–1539
https://doi.org/10.1021/acs.chemrev.5b00303
53 Y Liu, C W Wong, S W Chang, S H Hsu. An injectable, self-healing phenol-functionalized chitosan hydrogel with fast gelling property and visible light-crosslinking capability for 3D printing. Acta Biomaterialia, 2021, 122: 211–219
https://doi.org/10.1016/j.actbio.2020.12.051
54 A Liguori, S Subramaniyan, J G Yao, M Hakkarainen. Photocurable extended vanillin-based resin for mechanically and chemically recyclable, self-healable and digital light processing 3D printable thermosets. European Polymer Journal, 2022, 178: 111489
https://doi.org/10.1016/j.eurpolymj.2022.111489
55 M Grosjean, L Guth, S Déjean, C Paniagua, B Nottelet. Dynamic and degradable imine-based networks for 3D-printing of soft elastomeric self-healable devices. Advanced Materials Interfaces, 2023, 10(17): 2300066
https://doi.org/10.1002/admi.202300066
56 X Liu, E Zhang, J Liu, J Qin, M Wu, C Yang, L Liang. Self-healing, reprocessable, degradable, thermadapt shape memory multifunctional polymers based on dynamic imine bonds and their application in nondestructively recyclable carbon fiber composites. Chemical Engineering Journal, 2023, 454: 139992
https://doi.org/10.1016/j.cej.2022.139992
57 H Xu, J Tu, J Ji, L Liang, H Z Li, P Y Li, X Z Zhang, Q Y Gong, X D Guo. Ultra-high-strength self-healing supramolecular polyurethane based on successive loose hydrogen-bonded hard segment structures. European Polymer Journal, 2022, 177: 111437
https://doi.org/10.1016/j.eurpolymj.2022.111437
58 J R Huang, Z Gong, Y K Chen. A stretchable elastomer with recyclability and shape memory assisted self-healing capabilities based on dynamic disulfide bonds. Polymer, 2022, 242: 124569
https://doi.org/10.1016/j.polymer.2022.124569
59 S Bauhuber, C Hozsa, M Breunig, A Göpferich. Delivery of nucleic acids via disulfide-based carrier systems. Advanced Materials, 2009, 21(32‒33): 3286–3306
https://doi.org/10.1002/adma.200802453
60 X P Li, R Yu, Y Y He, Y Zhang, X Yang, X J Zhao, W Huang. Self-healing polyurethane elastomers based on a disulfide bond by digital light processing 3D printing. ACS Macro Letters, 2019, 8(11): 1511–1516
https://doi.org/10.1021/acsmacrolett.9b00766
61 J T Miao, M Y Ge, S Q Peng, J Zhong, Y W Li, Z X Weng, L X Wu, L H Zheng. Dynamic imine bond-based shape memory polymers with permanent shape reconfigurability for 4D printing. ACS Applied Materials & Interfaces, 2019, 11(43): 40642–40651
https://doi.org/10.1021/acsami.9b14145
62 X Kuang, J T Wu, K J Chen, Z A Zhao, Z Ding, F J Y Hu, D N Fang, H J Qi. Grayscale digital light processing 3D printing for highly functionally graded materials. Science Advances, 2019, 5(5): eaav5790
https://doi.org/10.1126/sciadv.aav5790
63 T Yimyai, A Pena-Francesch, D Crespy. Transparent and self-healing elastomers for reconfigurable 3D materials. Macromolecular Rapid Communications, 2022, 43(23): 2200554
https://doi.org/10.1002/marc.202200554
64 M Y Zheng, Q Q Guo, X Y Yin, N N Getangama, J R de Bruyn, J F Xiao, Y Bai, M Liu, J Yang. Direct ink writing of recyclable and in situ repairable photothermal polyurethane for sustainable 3D printing development. Journal of Materials Chemistry A, 2021, 9(11): 6981–6992
https://doi.org/10.1039/D0TA11341G
65 M Röttger, T Domenech, der Weegen R van, A Breuillac, R Nicolaÿ, L Leibler. High-performance vitrimers from commodity thermoplastics through dioxaborolane metathesis. Science, 2017, 356(6333): 62–65
https://doi.org/10.1126/science.aah5281
66 L L Robinson, J L Self, A D Fusi, M W Bates, J Read de Alaniz, C J Hawker, C M Bates, C S Sample. Chemical and mechanical tunability of 3D-printed dynamic covalent networks based on boronate esters. ACS Macro Letters, 2021, 10(7): 857–863
https://doi.org/10.1021/acsmacrolett.1c00257
67 W L A Brooks, B S Sumerlin. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chemical reviews, 2016, 116(3): 1375–1397
https://doi.org/10.1021/acs.chemrev.5b00300
68 A Pettignano, S Grijalvo, M Häring, R Eritja, N Tanchoux, F Quignard, Díaz D Díaz. Boronic acid-modified alginate enables direct formation of injectable, self-healing and multistimuli-responsive hydrogels. Chemical communications, 2017, 53(23): 3350–3353
https://doi.org/10.1039/C7CC00765E
69 Z Liu, D S Xiao, G C Liu, H P Xiang, M Z Rong, M Q Zhang. Self-healing and reprocessing of transparent UV-cured polysiloxane elastomer. Progress in Organic Coatings, 2021, 159: 106450
https://doi.org/10.1016/j.porgcoat.2021.106450
70 M Seong, S Kondaveeti, G Choi, S Kim, J Kim, M S Kang, H E Jeong. 3D printable self-adhesive and self-healing ionotronic hydrogels for wearable healthcare devices. ACS Applied Materials & Interfaces, 2023, 15(8): 11042–11052
https://doi.org/10.1021/acsami.2c21704
71 Y H Jin, C Yu, R J Denman, W Zhang. Recent advances in dynamic covalent chemistry. Chemical Society Reviews, 2013, 42(16): 6634–6654
https://doi.org/10.1039/c3cs60044k
72 D Montarnal, M Capelot, F Tournilhac, L Leibler. Silica-like malleable materials from permanent organic networks. Science, 2011, 334(6058): 965–968
https://doi.org/10.1126/science.1212648
73 Zee N J Van, R Nicolaÿ. Vitrimers: permanently crosslinked polymers with dynamic network topology. Progress in Polymer Science, 2020, 104: 101233
https://doi.org/10.1016/j.progpolymsci.2020.101233
74 M Fei, T Liu, B M Zhao, A Otero, Y C Chang, J W Zhang. From glassy plastic to ductile elastomer: vegetable oil-based UV-curable vitrimers and their potential use in 3D printing. ACS Applied Polymer Materials, 2021, 3(5): 2470–2479
https://doi.org/10.1021/acsapm.1c00063
75 E Rossegger, R Höller, D Reisinger, J Strasser, M Fleisch, T Griesser, S Schlögl. Digital light processing 3D printing with thiol–acrylate vitrimers. Polymer Chemistry, 2021, 12(5): 639–644
https://doi.org/10.1039/D0PY01520B
76 F F Kang, Y Yang, W P Wang, Z B Li. Self-healing polyester elastomer with tuning toughness and elasticity through intermolecular quadruple hydrogen bonding. European Polymer Journal, 2023, 184: 111794
https://doi.org/10.1016/j.eurpolymj.2022.111794
77 T Jungst, W Smolan, K Schacht, T Scheibel, J Groll. Strategies and molecular design criteria for 3D printable hydrogels. Chemical Reviews, 2016, 116(3): 1496–1539
https://doi.org/10.1021/acs.chemrev.5b00303
78 B B Guo, X Z Ji, X T Chen, G Li, Y G Lu, J M Bai. A highly stretchable and intrinsically self-healing strain sensor produced by 3D printing. Virtual and Physical Prototyping, 2020, 15: 520–531
https://doi.org/10.1080/17452759.2020.1823570
79 B B Guo, J S Zhang, K P Ananth, S Zhao, X Z Ji, J M Bai. Stretchable, self-healing and biodegradable water-based heater produced by 3D printing. Composites Part A: Applied Science and Manufacturing, 2020, 133: 105863
https://doi.org/10.1016/j.compositesa.2020.105863
80 Y C Wu, Y Zeng, Y Z Chen, C Li, R H Qiu, W D Liu. Photocurable 3D printing of high toughness and self-healing hydrogels for customized wearable flexible sensors. Advanced Functional Materials, 2021, 31(52): 2107202
https://doi.org/10.1002/adfm.202107202
81 F L Gang, H Yan, C Y Ma, L Jiang, Y Y Gu, Z Y Liu, L Y Zhao, X M Wang, J W Zhang, X D Sun. Robust magnetic double-network hydrogels with self-healing, MR imaging, cytocompatibility and 3D printability. Chemical Communications, 2019, 55(66): 9801–9804
https://doi.org/10.1039/C9CC04241E
82 M A Darabi, A Khosrozadeh, R Mbeleck, Y Q Liu, Q Chang, J Z Jiang, J Cai, Q Wang, G X Luo, M Xing. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Advanced Materials, 2018, 30(4): 1705922
https://doi.org/10.1002/adma.201705922
83 J Teyssandier, S D Feyter, K S Mali. Host‒guest chemistry in two-dimensional supramolecular networks. Chemical Communications, 2016, 52(77): 11465–11487
https://doi.org/10.1039/C6CC05256H
84 C B Highley, C B Rodell, J A Burdick. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Advanced Materials, 2015, 27(34): 5075–5079
https://doi.org/10.1002/adma.201501234
85 J H Jin, L L Cai, Y G Jia, S Liu, Y H Chen, L Ren. Progress in self-healing hydrogels assembled by host‒guest interactions: preparation and biomedical applications. Journal of Materials Chemistry B, 2019, 7(10): 1637–1651
https://doi.org/10.1039/C8TB02547A
86 S X Wang, P J Ong, S L Liu, W Thitsartarn, M J B H Tan, A Suwardi, Q Zhu, X J Loh. Recent advances in host‒guest supramolecular hydrogels for biomedical applications. Chemistry An Asian Journal, 2022, 17(18): e202200608
https://doi.org/10.1002/asia.202200608
87 G Sinawang, M Osaki, Y Takashima, H Yamaguchi, A Harada. Biofunctional hydrogels based on host‒guest interactions. Polymer Journal, 2020, 52(8): 839–859
https://doi.org/10.1038/s41428-020-0352-7
88 R Kumar, A Sharma, H Singh, P Suating, H S Kim, K Sunwoo, I Shim, B C Gibb, J S Kim. Revisiting fluorescent calixarenes: from molecular sensors to smart materials. Chemical reviews, 2019, 119(16): 9657–9721
https://doi.org/10.1021/acs.chemrev.8b00605
89 H Lambert, A Castillo Bonillo, Q Zhu, Y W Zhang, T C Lee. Supramolecular gating of guest release from cucurbit[7]uril using de novo design. npj Computational Materials, 2022, 8(1): 21
https://doi.org/10.1038/s41524-022-00702-0
90 Z F Wang, G An, Y Zhu, X M Liu, Y H Chen, H K Wu, Y J Wang, X T Shi, C B Mao. 3D-printable self-healing and mechanically reinforced hydrogels with host‒guest non-covalent interactions integrated into covalently linked networks. Materials Horizons, 2019, 6(4): 733–742
https://doi.org/10.1039/C8MH01208C
91 W Y He, D Zhou, H Gu, R S Qu, C Q Cui, Y Y Zhou, Y Wang, X R Zhang, Q H Wang, T M Wang, Y M Zhang. A biocompatible 4D printing shape memory polymer as emerging strategy for fabrication of deployable medical devices. Macromolecular Rapid Communications, 2023, 44(2): 2200553
https://doi.org/10.1002/marc.202200553
92 G D Zhu, Y Hou, J F Xiang, J Xu, N Zhao. Digital light processing 3D printing of healable and recyclable polymers with tailorable mechanical properties. ACS Applied Materials & Interfaces, 2021, 13(29): 34954–34961
https://doi.org/10.1021/acsami.1c08872
93 Z Gong, J R Huang, L M Cao, C H Xu, Y K Chen. Self-healing epoxidized natural rubber with ionic/coordination crosslinks. Materials Chemistry and Physics, 2022, 285: 126063
https://doi.org/10.1016/j.matchemphys.2022.126063
94 W B Wang, S Y Liu, L Y Liu, S Alfarhan, K L Jin, X F Chen. High-speed and high-resolution 3D printing of self-healing and ion-conductive hydrogels via μCLIP. ACS Materials Letters, 2023, 5(6): 1727–1737
https://doi.org/10.1021/acsmaterialslett.3c00439
95 J Dahlke, S Zechel, M D Hager, U S Schubert. How to design a self-healing polymer: general concepts of dynamic covalent bonds and their application for intrinsic healable materials. Advanced Materials Interfaces, 2018, 5(17): 1800051
https://doi.org/10.1002/admi.201800051
96 S Talebian, M Mehrali, N Taebnia, C P Pennisi, F B Kadumudi, J Foroughi, M Hasany, M Nikkhah, M Akbari, G Orive, A Dolatshahi-Pirouz. Self-healing hydrogels: the next paradigm shift in tissue engineering? Advanced Science, 2019, 6(16): 1801664 10.1002/advs.201801664
97 E A Clark, M R Alexander, D J Irvine, C J Roberts, M J Wallace, S Sharpe, J Yoo, R J M Hague, C J Tuck, R D Wildman. 3D printing of tablets using inkjet with UV photoinitiation. International Journal of Pharmaceutics, 2017, 529(1–2): 523–530
https://doi.org/10.1016/j.ijpharm.2017.06.085
98 J J Guan, H Y He, L J Lee, D J Hansford. Fabrication of particulate reservoir-containing, capsulelike, and self-folding polymer microstructures for drug delivery. Small, 2007, 3(3): 412–418
https://doi.org/10.1002/smll.200600240
99 M Y Teo, S Kee, N RaviChandran, L Stuart, K C Aw, J Stringer. RaviChandran N, Stuart L, Aw K C, Stringer J. Enabling free-standing 3D hydrogel microstructures with microreactive inkjet printing. ACS Applied Materials & Interfaces, 2020, 12(1): 1832–1839
https://doi.org/10.1021/acsami.9b17192
100 P Kunwar, Z Xiong, Y Zhu, H Y Li, A Filip, P Soman. Hybrid laser printing of 3D, multiscale, multimaterial hydrogel structures. Advanced Optical Materials, 2019, 7(21): 1900656
https://doi.org/10.1002/adom.201900656
101 I Seoane-Viaño, P Januskaite, C Alvarez-Lorenzo, A W Basit, A Goyanes. Semi-solid extrusion 3D printing in drug delivery and biomedicine: personalised solutions for healthcare challenges. Journal of Controlled Release, 2021, 332: 367–389
https://doi.org/10.1016/j.jconrel.2021.02.027
102 L L Wang, C B Highley, Y C Yeh, J H Galarraga, S Uman, J A Burdick. Three-dimensional extrusion bioprinting of single-and double-network hydrogels containing dynamic covalent crosslinks. Journal of Biomedical Materials Research Part A, 2018, 106(4): 865–875
https://doi.org/10.1002/jbm.a.36323
103 X Zhao, H Wu, B L Guo, R N Dong, Y S Qiu, P X Ma. Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing. Biomaterials, 2017, 122: 34–47
https://doi.org/10.1016/j.biomaterials.2017.01.011
104 S M Bai, M Y Zhang, X W Huang, X L Zhang, C H Lu, J B Song, H H Yang. A bioinspired mineral-organic composite hydrogel as a self-healable and mechanically robust bone graft for promoting bone regeneration. Chemical Engineering Journal, 2021, 413: 127512
https://doi.org/10.1016/j.cej.2020.127512
105 R Chen, C Q Zhu, L Xu, Y Gu, S J Ren, H Bai, Q Zhou, X Liu, S F Lu, X L Bi, W D Li, X B Jia, Z P Chen. An injectable peptide hydrogel with excellent self-healing ability to continuously release salvianolic acid B for myocardial infarction. Biomaterials, 2021, 274: 120855
https://doi.org/10.1016/j.biomaterials.2021.120855
106 N Ashammakhi, S Ahadian, C Xu, H Montazerian, H Ko, R Nasiri, N Barros, A Khademhosseini. Bioinks and bioprinting technologies to make heterogeneous and biomimetic tissue constructs. Materials Today Bio, 2019, 1: 100008
https://doi.org/10.1016/j.mtbio.2019.100008
107 S Derakhshanfar, R Mbeleck, K G Xu, X Y Zhang, W Zhong, M Xing. 3D bioprinting for biomedical devices and tissue engineering: a review of recent trends and advances. Bioactive Materials, 2018, 3(2): 144–156
https://doi.org/10.1016/j.bioactmat.2017.11.008
108 Y Y Yang, L F Xu, J F Wang, Q Y Meng, S L Zhong, Y Gao, X J Cui. Recent advances in polysaccharide-based self-healing hydrogels for biomedical applications. Carbohydrate Polymers, 2022, 283: 119161
https://doi.org/10.1016/j.carbpol.2022.119161
109 S Gupta, A Sharma, J Vasantha Kumar, V Sharma, P K Gupta, R S Verma. Meniscal tissue engineering via 3D printed PLA monolith with carbohydrate based self-healing interpenetrating network hydrogel. International Journal of Biological Macromolecules, 2020, 162: 1358–1371
https://doi.org/10.1016/j.ijbiomac.2020.07.238
110 Q Gao, Y He, J Z Fu, A Liu, L Ma. Coaxial nozzle-assisted 3D bioprinting with built-in microchannels for nutrients delivery. Biomaterials, 2015, 61: 203–215
https://doi.org/10.1016/j.biomaterials.2015.05.031
111 C U Mun, H S Kim, M Kong, K Y Lee. Three-dimensional printing of hyaluronate-based self-healing ferrogel with enhanced stretchability. Colloids and Surfaces B: Biointerfaces, 2023, 221: 113004
https://doi.org/10.1016/j.colsurfb.2022.113004
112 A G Tabriz, D Douroumis. Recent advances in 3D printing for wound healing: a systematic review. Journal of Drug Delivery Science and Technology, 2022, 74: 103564
https://doi.org/10.1016/j.jddst.2022.103564
113 K Flégeau, R Pace, H Gautier, G Rethore, J Guicheux, Visage C Le, P Weiss. Toward the development of biomimetic injectable and macroporous biohydrogels for regenerative medicine. Advances in Colloid and Interface Science, 2017, 247: 589–609
https://doi.org/10.1016/j.cis.2017.07.012
114 J X Yan, Y Wang, X Zhang, X L Zhao, J Z Ma, X Y Pu, Y G Wang, F Ran, Y L Wang, F F Leng, W J Zhang. Snakegourd root/astragalus polysaccharide hydrogel preparation and application in 3D printing. International Journal of Biological Macromolecules, 2019, 121: 309–316
https://doi.org/10.1016/j.ijbiomac.2018.10.008
115 H Xu, L Zhang, J Cai. Injectable, self-healing, β-chitin-based hydrogels with excellent cytocompatibility, antibacterial activity, and potential as drug/cell carriers. ACS Applied Bio Materials, 2019, 2(1): 196–204
https://doi.org/10.1021/acsabm.8b00548
116 J H He, Z Q Xie, K M Yao, D F Li, Y M Liu, Z Gao, W Lu, L Q Chang, X Yu. Trampoline inspired stretchable triboelectric nanogenerators as tactile sensors for epidermal electronics. Nano Energy, 2021, 81: 105590
https://doi.org/10.1016/j.nanoen.2020.105590
117 S Sun, Y Z Xu, X Maimaitiyiming. 3D printed carbon nanotube/polyaniline/gelatin flexible NH3, stress, strain, temperature multifunctional sensor. Reactive & Functional Polymers, 2023, 190: 105625
https://doi.org/10.1016/j.reactfunctpolym.2023.105625
118 D D Lei, Q X Zhang, N S Liu, T Y Su, L X Wang, Z Q Ren, Z Zhang, J Su, Y H Gao. Self-powered graphene oxide humidity sensor based on potentiometric humidity transduction mechanism. Advanced Functional Materials, 2022, 32(10): 2107330
https://doi.org/10.1002/adfm.202107330
119 X Peng, K Dong, Z Y Wu, J Wang, Z L Wang. A review on emerging biodegradable polymers for environmentally benign transient electronic skins. Journal of Materials Science, 2021, 56(30): 16765–16789
https://doi.org/10.1007/s10853-021-06323-0
120 T S Chu, H L Wang, Y M Qiu, H X Luo, B F He, B Wu, B B Gao. 3D printed smart silk wearable sensors. Analyst, 2021, 146(5): 1552–1558
https://doi.org/10.1039/D0AN02292F
121 Q Chang, M A Darabi, Y Q Liu, Y F He, W Zhong, K Mequanint, B Y Li, F Lu, M M Q Xing. Hydrogels from natural egg white with extraordinary stretchability, direct-writing 3D printability and self-healing for fabrication of electronic sensors and actuators. Journal of Materials Chemistry A, 2019, 7(42): 24626–24640
https://doi.org/10.1039/C9TA06233E
122 J F Xiao, Q Q Guo, Y Bai, M Y Zheng, Y Sun, L W Zhang, D X Zhang, J Yang. “One for more” functionalization by plant-inspired polyphenols assisted 3D printing. Additive Manufacturing, 2023, 61: 103294
https://doi.org/10.1016/j.addma.2022.103294
123 W B Han, J H Lee, J Shin, S Hwang. Advanced materials and systems for biodegradable, transient electronics. Advanced Materials, 2020, 32(51): 2002211
https://doi.org/10.1002/adma.202002211
124 C Majidi, R Kramer, R J Wood. A non-differential elastomer curvature sensor for softer-than-skin electronics. Smart Materials and Structures, 2011, 20(10): 105017
https://doi.org/10.1088/0964-1726/20/10/105017
125 M D Dickey, R C Chiechi, R J Larsen, E A Weiss, D A Weitz, G M Whitesides. Eutectic gallium-indium (EGaIn): a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials, 2008, 18(7): 1097–1104
https://doi.org/10.1002/adfm.200701216
126 J Y Yang, D Tang, J P Ao, T Ghosh, T V Neumann, D G Zhang, Y Piskarev, T T Yu, V K Truong, K Xie, Y Lai, Y Li, M D Dickey. Ultrasoft liquid metal elastomer foams with positive and negative piezopermittivity for tactile sensing. Advanced Functional Materials, 2020, 30(36): 2002611
https://doi.org/10.1002/adfm.202002611
127 A Abodurexiti, X Maimaitiyiming. Carbon nanotubes-based 3D printing ink for multifunctional “artificial epidermis” with long-term environmental stability. Macromolecular Chemistry and Physics, 2022, 223(11): 2100486
https://doi.org/10.1002/macp.202100486
128 L Cai, G X Chen, B Su, M H He. 3D printing of ultra-tough, self-healing transparent conductive elastomeric sensors. Chemical Engineering Journal, 2021, 426: 130545
https://doi.org/10.1016/j.cej.2021.130545
129 X H Chen, Y Wang, S Zhang, J S Cui, X Y Ma, L D Tian, M Y Li, C W Bao, Q H Wei, B Du. 3D printing of graphene oxide/carbon nanotubes hydrogel circuits for multifunctional fire alarm and protection. Polymer Testing, 2023, 119: 107905
https://doi.org/10.1016/j.polymertesting.2022.107905
130 L B Dong, C J Xu, Y Li, Z H Huang, F Y Kang, Q H Yang, X Zhao. Flexible electrodes and supercapacitors for wearable energy storage: a review by category. Journal of Materials Chemistry A, 2016, 4(13): 4659–4685
https://doi.org/10.1039/C5TA10582J
131 W B Kang, L Zeng, S W Ling, R X Yuan, C H Zhang. Self-healable inks permitting 3D printing of diverse systems towards advanced bicontinuous supercapacitors. Energy Storage Materials, 2021, 35: 345–352
https://doi.org/10.1016/j.ensm.2020.11.032
132 H H Zhang, Y Qiao, Z S Lu. Fully printed ultraflexible supercapacitor supported by a single-textile substrate. ACS Applied Materials & Interfaces, 2016, 8(47): 32317–32323
https://doi.org/10.1021/acsami.6b11172
133 M W Zhang, X L Tao, R Yu, Y Y He, X P Li, X Y Chen, W Huang. Self-healing, mechanically robust, 3D printable ionogel for highly sensitive and long-term reliable ionotronics. Journal of Materials Chemistry A, 2022, 10(22): 12005–12015
https://doi.org/10.1039/D1TA09641A
134 L Li, Z Wu, S Yuan, X B Zhang. Advances and challenges for flexible energy storage and conversion devices and systems. Energy & Environmental Science, 2014, 7(7): 2101–2122
https://doi.org/10.1039/c4ee00318g
135 L Liu, Y Feng, W Wu. Recent progress in printed flexible solid-state supercapacitors for portable and wearable energy storage. Journal of Power Sources, 2019, 410–411: 69–77 10.1016/j.jpowsour.2018.11.012
136 S Rani, N Kumar, Y Sharma. Recent progress and future perspectives for the development of micro-supercapacitors for portable/wearable electronics applications. Journal of Physics: Energy, 2021, 3(3): 032017
https://doi.org/10.1088/2515-7655/ac01c0
137 J W Long, B Dunn, D R Rolison, H S White. Three-dimensional battery architectures. Chemical Reviews, 2004, 104(10): 4463–4492
https://doi.org/10.1021/cr020740l
138 Y H Liu, A Y Zhang, C F Shen, Q Z Liu, X Cao, Y Q Ma, L Chen, C Lau, T C Chen, F Wei, C W Zhou. Red phosphorus nanodots on reduced graphene oxide as a flexible and ultra-fast anode for sodium-ion batteries. ACS Nano, 2017, 11(6): 5530–5537
https://doi.org/10.1021/acsnano.7b00557
139 W Liu, P Oh, X E Liu, M J Lee, W Cho, S Chae, Y Kim, J Cho. Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries. Angewandte Chemie International Edition, 2015, 54(15): 4440–4457
https://doi.org/10.1002/anie.201409262
140 M Das, A R Parathodika, P Maji, K Naskar. Dynamic chemistry: the next generation platform for various elastomers and their mechanical properties with self-healing performance. European Polymer Journal, 2023, 186: 111844
https://doi.org/10.1016/j.eurpolymj.2023.111844
141 Z W Wang, H J Cui, M D Liu, S L Grage, M Hoffmann, E Sedghamiz, W Wenzel, P A Levkin. Tough, transparent, 3D-printable, and self-healing poly(ethylene glycol)-gel (PEGgel). Advanced Materials, 2022, 34(11): 2107791
https://doi.org/10.1002/adma.202107791
142 E F Gomez, S V Wanasinghe, A E Flynn, O J Dodo, J L Sparks, L A Baldwin, C E Tabor, M F Durstock, D Konkolewicz, C J Thrasher. 3D-printed self-healing elastomers for modular soft robotics. ACS Applied Materials & Interfaces, 2021, 13(24): 28870–28877
https://doi.org/10.1021/acsami.1c06419
143 S Terryn, E Roels, J Brancart, G Van Assche, B Vanderborght. Self-healing and high interfacial strength in multi-material soft pneumatic robots via reversible Diels–Alder bonds. Actuators, 2020, 9(2): 34
https://doi.org/10.3390/act9020034
144 S Li, H D Bai, Z Liu, X Y Zhang, C Q Huang, L W Wiesner, M Silberstein, R F Shepherd. Digital light processing of liquid crystal elastomers for self-sensing artificial muscles. Science Advances, 2021, 7(30): eabg3677
https://doi.org/10.1126/sciadv.abg3677
145 J Cao, C L Zhou, G H Su, X X Zhang, T Zhou, Z H Zhou, Y B Yang. Arbitrarily 3D configurable hygroscopic robots with a covalent-noncovalent interpenetrating network and self-healing ability. Advanced Materials, 2019, 31(18): 1900042
https://doi.org/10.1002/adma.201900042
146 M Priyadarsini, D Rekha Sahoo, T Biswal. A new generation self-healing composite materials. Materials Today: Proceedings, 2021, 47: 1229–1233
https://doi.org/10.1016/j.matpr.2021.06.456
147 V V Shinde, Y Y Wang, M F Salek, M L Auad, L E Beckingham, B S Beckingham. Material design for enhancing properties of 3D printed polymer composites for target applications. Technologies, 2022, 10(2): 45
https://doi.org/10.3390/technologies10020045
148 Y Z Zhang, K H Lee, D H Anjum, R Sougrat, Q Jiang, H Kim, H N Alshareef. MXenes stretch hydrogel sensor performance to new limits. Science Advances, 2018, 4(6): eaat0098
https://doi.org/10.1126/sciadv.aat0098
149 F Momeni. N S M, Liu X, Ni J. A review of 4D printing. Materials & Design, 2017, 122: 42–79
https://doi.org/10.1016/j.matdes.2017.02.068
150 C M González-Henríquez, M A Sarabia-Vallejos, J Rodriguez-Hernandez. Polymers for additive manufacturing and 4D-printing: materials, methodologies, and biomedical applications. Progress in Polymer Science, 2019, 94: 57–116
https://doi.org/10.1016/j.progpolymsci.2019.03.001
151 G D Zhu, Y Hou, J Xu, N Zhao. Reprintable polymers for digital light processing 3D printing. Advanced Functional Materials, 2021, 31(9): 2007173
https://doi.org/10.1002/adfm.202007173
152 D Puppi, F Chiellini. Biodegradable polymers for biomedical additive manufacturing. Applied Materials Today, 2020, 20: 100700
https://doi.org/10.1016/j.apmt.2020.100700
153 Z Q Chen, M Yang, M K Ji, X Kuang, H J Qi, T J Wang. Recyclable thermosetting polymers for digital light processing 3D printing. Materials & Design, 2021, 197: 109189
https://doi.org/10.1016/j.matdes.2020.109189
154 Q Shi, K Yu, X Kuang, X M Mu, C K Dunn, M L Dunn, T J Wang, H Jerry Qi. Recyclable 3D printing of vitrimer epoxy. Materials Horizons, 2017, 4(4): 598–607
https://doi.org/10.1039/C7MH00043J
155 L Dong, M X Wang, J J Wu, C Y Zhang, J Shi, K M Oh, L R Yao, C H Zhu, H Morikawa. Fully biofriendly, biodegradable and recyclable hydrogels based on covalent-like hydrogen bond engineering towards multimodal transient electronics. Chemical Engineering Journal, 2023, 457: 141276
https://doi.org/10.1016/j.cej.2023.141276
156 P Ahangar, M E Cooke, M H Weber, D H Rosenzweig. Current biomedical applications of 3D printing and additive manufacturing. Applied Sciences, 2019, 9(8): 1713
https://doi.org/10.3390/app9081713
157 T T Zhao, R Yu, S Li, X P Li, Y Zhang, X Yang, X J Zhao, C Wang, Z C Liu, R Dou, W Huang. Superstretchable and processable silicone elastomers by digital light processing 3D printing. ACS Applied Materials & Interfaces, 2019, 11(15): 14391–14398
https://doi.org/10.1021/acsami.9b03156
158 S J Liu, L Li. Ultrastretchable and self-healing double-network hydrogel for 3D printing and strain sensor. ACS Applied Materials & Interfaces, 2017, 9(31): 26429–26437
https://doi.org/10.1021/acsami.7b07445
159 A J Boydston, B Cao, A Nelson, R J Ono, A Saha, J J Schwartz, C J Thrasher. Additive manufacturing with stimuli-responsive materials. Journal of Materials Chemistry A, 2018, 6(42): 20621–20645
https://doi.org/10.1039/C8TA07716A
160 M Shahbazi, H Jäger. Current status in the utilization of biobased polymers for 3D printing process: a systematic review of the materials, processes, and challenges. ACS Applied Bio Materials, 2021, 4(1): 325–369
https://doi.org/10.1021/acsabm.0c01379
161 G Ge, Y Z Zhang, W L Zhang, W Yuan, J K El-Demellawi, P Zhang, E Di Fabrizio, X C Dong, H N Alshareef. Ti3C2Tx MXene-activated fast gelation of stretchable and self-healing hydrogels: a molecular approach. ACS Nano, 2021, 15(2): 2698–2706
https://doi.org/10.1021/acsnano.0c07998
162 S Joshi, K Rawat, C Karunakaran, V Rajamohan, A T Mathew, K Koziol, K V Thakur, A S S Balan. 4D printing of materials for the future: opportunities and challenges. Applied Materials Today, 2020, 18: 100490
https://doi.org/10.1016/j.apmt.2019.100490
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed