1. The State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 2. The Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China 3. Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310027, China
Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend. Among various manufacturing technologies, magnetic-assisted digital light processing (DLP) stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field. Current research on manufacturing magnetic flexible actuators mostly employs single materials, which limits the magnetic driving performance to some extent. Based on these characterizations, we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200 μm. The flexible actuators are printed using two materials with different mechanical and magnetic properties. Considering the interface connectivity of multi-material printing, the effect of interfaces on mechanical properties is also explored. Experimental results indicate good chemical affinity between the two materials we selected. The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures. In addition, we investigate the influence of the volume fraction of the magnetic part on deformation. Simulation and experimental results indicate that increasing the volume ratio (20% to 50%) of the magnetic structure can enhance the responsiveness of the actuator (more than 50%). Finally, we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements: a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions. These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.
Y F Zhang , C J X Ng , Z Chen , W Zhang , S Panjwani , K Kowsari , H Y Yang , Q Ge . Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing. Advanced Materials Technologies, 2019, 4(10): 1900427 https://doi.org/10.1002/admt.201900427
2
Y Dong , L Wang , N Xia , Z X Yang , C Zhang , C F Pan , D Jin , J C Zhang , C Majidi , L Zhang . Untethered small-scale magnetic soft robot with programmable magnetization and integrated multifunctional modules. Science Advances, 2022, 8(25): eabn8932 https://doi.org/10.1126/sciadv.abn8932
H J Lu , Y Hong , Y Yang , Z B Yang , Y J Shen . Battery-less soft millirobot that can move, sense, and communicate remotely by coupling the magnetic and piezoelectric effects. Advanced Science, 2020, 7(13): 2000069 https://doi.org/10.1002/advs.202000069
5
H Z Dai , C Q Zhang , C F Pan , H Hu , K P Ji , H N Sun , C X Lyu , D F Tang , T F Li , J Z Fu , P Zhao . Split-type magnetic soft tactile sensor with 3D force decoupling. Advanced Materials, 2024, 36(11): 2310145 https://doi.org/10.1002/adma.202310145
6
X Y Hu , Z X Ge , X D Wang , N D Jiao , S Tung , L Q Liu . Multifunctional thermo-magnetically actuated hybrid soft millirobot based on 4D printing. Composites Part B: Engineering, 2022, 228: 109451 https://doi.org/10.1016/j.compositesb.2021.109451
7
H J Lu , M Zhang , Y Y Yang , Q Huang , T Fukuda , Z K Wang , Y J Shen . A bioinspired multilegged soft millirobot that functions in both dry and wet conditions. Nature Communications, 2018, 9(1): 3944 https://doi.org/10.1038/s41467-018-06491-9
8
Y D Wu , X G Dong , J K Kim , C X Wang , M Sitti . Wireless soft millirobots for climbing three-dimensional surfaces in confined spaces. Science Advances, 2022, 8(21): eabn3431 https://doi.org/10.1126/sciadv.abn3431
Z Q Zhang , R F Wang , M F Yuan , X Z Huang , C Ding , H P Wu , S L Wang , A P Liu . Magnetically driven pH-responsive composite hydrogel for controlled drug delivery. Functional Materials Letters, 2022, 15(5): 2250022 https://doi.org/10.1142/S1793604722500229
11
B J Jin , H J Song , R Q Jiang , J Z Song , Q Zhao , T Xie . Programming a crystalline shape memory polymer network with thermo- and photo-reversible bonds toward a single-component soft robot. Science Advances, 2018, 4(1): eaao3865 https://doi.org/10.1126/sciadv.aao3865
12
K K Liu , Y Zhang , H Q Cao , H N Liu , Y H Geng , W H Yuan , J Zhou , Z L Wu , G R Shan , Y Z Bao , Q Zhao , T Xie , P J Pan . Programmable reversible shape transformation of hydrogels based on transient structural anisotropy. Advanced Materials, 2020, 32(28): 2001693 https://doi.org/10.1002/adma.202001693
13
D Wang , H P Xu , J Q Wang , C R Jiang , X Y Zhu , Q Ge , G Y Gu . Design of 3D printed programmable horseshoe lattice structures based on a phase-evolution model. ACS Applied Materials & Interfaces, 2020, 12(19): 22146–22156 https://doi.org/10.1021/acsami.0c04097
14
Y F Zhang , N B Zhang , H Hingorani , N Y Ding , D Wang , C Yuan , B Zhang , G Y Gu , Q Ge . Fast-response, stiffness-tunable soft actuator by hybrid multimaterial 3D printing. Advanced Functional Materials, 2019, 29(15): 1806698 https://doi.org/10.1002/adfm.201806698
15
L L Xu , F H Xue , H W Zheng , Q X Ji , C W Qiu , Z Chen , X Zhao , P Y Li , Y Hu , Q Y Peng , X D He . An insect larvae inspired MXene-based jumping actuator with controllable motion powered by light. Nano Energy, 2022, 103: 107848 https://doi.org/10.1016/j.nanoen.2022.107848
16
L F Chang , D P Wang , Z S Huang , C F Wang , J Torop , B Li , Y J Wang , Y Hu , A Aabloo . A versatile ionomer-based soft actuator with multi-stimulus responses, self-sustainable locomotion, and photoelectric Conversion. Advanced Functional Materials, 2023, 33(6): 2212341 https://doi.org/10.1002/adfm.202212341
17
C C Zhang , H Zhang , R F Chen , L H Zhao , H Wu , C W Wang , Y Hu . A bioinspired programmable soft bilayer actuator based on aluminum exoskeleton. Advanced Materials Technologies, 2022, 7(9): 2200036 https://doi.org/10.1002/admt.202200036
18
H Wei , K Li , W G Liu , H Meng , P X Zhang , C Y Yan . 3D printing of free-standing stretchable electrodes with tunable structure and stretchability. Advanced Engineering Materials, 2017, 19(11): 1700341 https://doi.org/10.1002/adem.201700341
19
N Xia , D D Jin , V Iacovacci , L Zhang . 3D printing of functional polymers for miniature machines. Multifunctional Materials, 2022, 5(1): 012001 https://doi.org/10.1088/2399-7532/ac4836
20
D F Tang , C Q Zhang , H N Sun , H Z Dai , J Xie , J Z Fu , P Zhao . Origami-inspired magnetic-driven soft actuators with programmable designs and multiple applications. Nano Energy, 2021, 89: 106424 https://doi.org/10.1016/j.nanoen.2021.106424
21
J C Zhang , Z Y Ren , W Q Hu , R H Soon , I C Yasa , Z M Liu , M Sitti . Voxelated three-dimensional miniature magnetic soft machines via multimaterial heterogeneous assembly. Science Robotics, 2021, 6(53): eabf0112 https://doi.org/10.1126/scirobotics.abf0112
22
Z Y Ji , C Y Yan , B Yu , X L Wang , F Zhou . Multimaterials 3D printing for free assembly manufacturing of magnetic driving soft actuator. Advanced Materials Interfaces, 2017, 4(22): 1700629 https://doi.org/10.1002/admi.201700629
23
Y Kim , H Yuk , R K Zhao , S A Chester , X H Zhao . Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature, 2018, 558(7709): 274–279 https://doi.org/10.1038/s41586-018-0185-0
24
S Qi , H Y Guo , J Fu , Y P Xie , M Zhu , M Yu . 3D printed shape-programmable magneto-active soft matter for biomimetic applications. Composites Science and Technology, 2020, 188: 107973 https://doi.org/10.1016/j.compscitech.2019.107973
25
T Q Xu , J C Zhang , M Salehizadeh , O Onaizah , E Diller . Millimeter-scale flexible robots with programmable three-dimensional magnetization and motions. Science Robotics, 2019, 4(29): eaav4494 https://doi.org/10.1126/scirobotics.aav4494
26
H N Sun , C Q Zhang , C F Pan , Z Z Hu , Y J Huang , D F Tang , J Xie , H Z Dai , H Hu , T F Li , P Zhao . Magnetic field-assisted manufacturing of groove-structured flexible actuators with enhanced performance. Additive Manufacturing, 2024, 80: 103979 https://doi.org/10.1016/j.addma.2024.103979
27
A J Cresswell-Boyes , A H Barber , D Mills , A Tatla , G R Davis . Approaches to 3D printing teeth from X-ray microtomography. Journal of Microscopy, 2018, 272(3): 207–212 https://doi.org/10.1111/jmi.12725
28
O A Hamid , H M Eltaher , V Sottile , J Yang . 3D bioprinting of a stem cell-laden, multi-material tubular composite: an approach for spinal cord repair. Materials Science and Engineering: C, 2021, 120: 111707 https://doi.org/10.1016/j.msec.2020.111707
29
F Li , N P Macdonald , R M Guijt , M C Breadmore . Multimaterial 3D printed fluidic device for measuring pharmaceuticals in biological fluids. Analytical Chemistry, 2019, 91(3): 1758–1763 https://doi.org/10.1021/acs.analchem.8b03772
30
Y F Lu , S N Mantha , D C Crowder , S Chinchilla , K N Shah , Y H Yun , R B Wicker , J W Choi . Microstereolithography and characterization of poly (propylene fumarate)-based drug-loaded microneedle arrays. Biofabrication, 2015, 7(4): 045001 https://doi.org/10.1088/1758-5090/7/4/045001
31
A K Miri , D Nieto , L Iglesias , H Goodarzi Hosseinabadi , S Maharjan , G U Ruiz-Esparza , P Khoshakhlagh , A Manbachi , M R Dokmeci , S C Chen , S R Shin , Y S Zhang , A Khademhosseini . Microfluidics-enabled multimaterial maskless stereolithographic bioprinting. Advanced Materials, 2018, 30(27): 1800242 https://doi.org/10.1002/adma.201800242
32
D J Roach , C M Hamel , C K Dunn , M V Johnson , X Kuang , H J Qi . The m4 3D printer: a multi-material multi-method additive manufacturing platform for future 3D printed structures. Additive Manufacturing, 2019, 29: 100819 https://doi.org/10.1016/j.addma.2019.100819
33
Q J Ze , X Kuang , S Wu , J Wong , S M Montgomery , R D Zhang , J M Kovitz , F Y Yang , H J Qi , R K Zhao . Magnetic shape memory polymers with integrated multifunctional shape manipulation. Advanced Materials, 2020, 32(4): 1906657 https://doi.org/10.1002/adma.201906657
34
B Zhang , S Y Li , H Hingorani , A Serjouei , L Larush , A A Pawar , W H Goh , A H Sakhaei , M Hashimoto , K Kowsari , S Magdassi , Q Ge . Highly stretchable hydrogels for UV curing based high-resolution multimaterial 3D printing. Journal of Materials Chemistry B, 2018, 6(20): 3246–3253 https://doi.org/10.1039/C8TB00673C
35
Y Zhang, H Chen, S Qiu, Y Zhang, X Zhu. Multi-material integrated printing of reprogrammable magnetically actuated soft structure. In: International Conference on Intelligent Robotics and Applications. Singapore: Springer, 2023, 63–70
36
Z Z Hu , C Q Zhang , H N Sun , X J Ma , P Zhao . Length manipulation of hard magnetic particle chains under rotating magnetic fields. Sensors and Actuators A: Physical, 2023, 361: 114562 https://doi.org/10.1016/j.sna.2023.114562
37
Z Z Hu , C Q Zhang , H N Sun , H Z Dai , D F Tang , H Hu , T F Li , J Z Fu , P Zhao . A microstructure enhancement method for hard magnetic particle chains based on magnetic field oscillation sieve. Materials & Design, 2024, 237: 112588 https://doi.org/10.1016/j.matdes.2023.112588
38
L R Lopes , A F Silva , O S Carneiro . Multi-material 3D printing: the relevance of materials affinity on the boundary interface performance. Additive Manufacturing, 2018, 23: 45–52 https://doi.org/10.1016/j.addma.2018.06.027