In the past decade, micro-electromechanical systems (MEMS)-based thermoelectric infrared (IR) sensors have received considerable attention because of the advances in micromachining technology. This paper presents a review of MEMS-based thermoelectric IR sensors. The first part describes the physics of the device and discusses the figures of merit. The second part discusses the sensing materials, thermal isolation microstructures, absorber designs, and packaging methods for these sensors and provides examples. Moreover, the status of sensor implementation technology is examined from a historical perspective by presenting findings from the early years to the most recent findings.
Rogalski A. Infrared Detectors. New York: Gordon and Breach Science Publishers, 2000
2
Graf A, Arndt M, Sauer M, et al. Review of micromachined thermopiles for infrared detection. Measurement Science and Technology, 2007, 18(7): R59–R75 https://doi.org/10.1088/0957-0233/18/7/R01
3
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46 https://doi.org/10.1109/84.825775
4
Du C H, Lee C. Characterization of thermopile based on complementary metal-oxide-semiconductor (CMOS) materials and post CMOS micromachining. Japanese Journal of Applied Physics, Part 1, Regular Papers & Short Notes, 2002, 41(6B): 4340–4345 https://doi.org/10.1143/JJAP.41.4340
5
Xu D, Xiong B, Wang Y. Modeling of front-etched micromachined thermopile IR detector by CMOS technology. Journal of Microelectromechanical Systems, 2010, 19(6): 1331–1340 https://doi.org/10.1109/JMEMS.2010.2076790
6
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal design and noise considerations of CMOS compatible IR thermoelectric sensors. Sensor and Actuators A: Physical, 1998, 71(1–2): 107–115 https://doi.org/10.1016/S0924-4247(98)00179-4
7
Socher E, Bochobza-Degani O, Nemirovsky Y. Optimal performance of CMOS compatible IR thermoelectric sensors. Journal of Microelectromechanical Systems, 2000, 9(1): 38–46 https://doi.org/10.1109/84.825775
8
Völklein F, Baltes H. Optimization tool for the performance parameters of thermoelectric microsensors. Sensors and Actuators A: Physical, 1993, 36(1): 65–71 https://doi.org/10.1016/0924-4247(93)80142-4
9
Kozlov A G. Optimization of thin-film thermoelectric radiation sensor with separate disposition of absorbing layer and comb thermoelectric transducer. Sensors and Actuators A: Physical, 2000, 84(3): 259–269 https://doi.org/10.1016/S0924-4247(00)00358-7
10
Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 1. Theory. Sensors and Actuators A: Physical, 2002, 101(3): 283–298 https://doi.org/10.1016/S0924-4247(02)00209-1
11
Kozlov A G. Analytical modelling of steady-state temperature distribution in thermal microsensors using Fourier method: Part 2. Practical application. Sensors and Actuators A: Physical, 2002, 101(3): 299–310 https://doi.org/10.1016/S0924-4247(02)00210-8
Escriba C, Campo E, Esteve D, et al. Complete analytical modeling and analysis of micromachined thermoelectric uncooled IR sensors. Sensors and Actuators A: Physical, 2005, 120(1): 267–276 https://doi.org/10.1016/j.sna.2004.11.027
14
Mattsson C G, Bertilsson K, Thungström G, et al. Thermal simulation and design optimization of a thermopile infrared detector with an SU-8 membrane. Journal of Micromechanics and Microengineering, 2009, 19(5): 055016 https://doi.org/https://doi.org/10.1088/0960-1317/19/5/055016
15
Levin A. A numerical simulation tool for infrared thermopile detectors. In: Proceedings of 24th International Conference on Thermoelectrics. IEEE, 2005, 476–479 https://doi.org/10.1109/ICT.2005.1519986
16
Elbel T, Lenggenhager R, Baltes H. Model of thermoelectric radiation sensors made by CMOS and micromachining. Sensors and Actuators A: Physical, 1992, 35(2): 101–106 https://doi.org/10.1016/0924-4247(92)80147-U
17
Lahiji G R, Wise K D. A monolithic thermopile detector fabricated using integrated-circuit technology. In: Proceedings of 1980 International Electron Devices Meeting. IEEE, 1980, 26: 676–679 https://doi.org/10.1109/IEDM.1980.189926
18
Roncaglia A, Ferri M. Thermoelectric materials in MEMS and NEMS: A review. Science of Advanced Materials, 2011, 3(3): 401–419 https://doi.org/10.1166/sam.2011.1168
19
Liao C N,Chen C, Tu K N. Thermoelectric characterization of Si thin films in silicon-on-insulator wafers. Journal of Applied Physics, 1999, 86(6): 3204–3208 https://doi.org/http://dx.doi.org/10.1063/1.371190
20
Haenschke F, Kessler E, Dillner U, et al. A new high detectivity room temperature linear thermopile array with a D* greater than 2×109 cmHz1/2/W based on organic membranes. Microsystem Technologies, 2013, 19(12): 1927–1933 https://doi.org/10.1007/s00542-013-1764-5
21
Lindeberg M, Yousef H, Rödjegård H, et al. A PCB-like process for vertically configured thermopiles. Journal of Micromechanics and Microengineering, 2008, 18(6): 065021 https://doi.org/10.1088/0960-1317/18/6/065021
22
Kasalynas I, Adam A J L, Klaassen T O, et al. Design and performance of a room-temperature terahertz detection array for real-time imaging. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(2): 363–369 https://doi.org/10.1109/JSTQE.2007.912629
23
Müller M, Budde W, Gottfried-Gottfried R, et al. A thermoelectric infrared radiation sensor with monolithically integrated amplifier stage and temperature sensor. Sensors and Actuators A: Physical, 1996, 54(1–3): 601–605 https://doi.org/10.1016/S0924-4247(97)80022-2
24
Sarro P M, Yashiro H, Herwaarden A W, et al. An integrated thermal infrared sensing array. Sensors and Actuators A: Physical, 1988, 14(2): 191–201 https://doi.org/10.1016/0250-6874(88)80065-9
25
Fonollosa J, Carmona M, Santander J, et al. Limits to the integration of filters and lenses on thermoelectric IR detectors by flip-chip techniques. Sensors and Actuators A: Physical, 2009, 149(1): 65–73 https://doi.org/10.1016/j.sna.2008.10.008
26
Fonollosa J, Halford B, Fonseca L, et al. Ethylene optical spectrometer for apple ripening monitoring in controlled atmosphere store-houses. Sensors and Actuators B: Chemical, 2009, 136(2): 546–554 https://doi.org/10.1016/j.snb.2008.12.015
27
Fonollosa J, Rubio R, Hartwig S, et al. Design and fabrication of silicon-based mid infrared multi-lenses for gas sensing applications. Sensors and Actuators B: Chemical, 2008, 132(2): 498–507 https://doi.org/10.1016/j.snb.2007.11.014
28
Schaufelbuhl A, Schneeberger N, Munch U, et al. Uncooled low-cost thermal imager based on micromachined CMOS integrated sensor array. Journal of Microelectromechanical Systems, 2001, 10(4): 503–510 https://doi.org/10.1109/84.967372
29
von Arx M, Paul O, Baltes H. Test structures to measure the heat capacity of CMOS layer sandwiches. IEEE Transactions on Semiconductor Manufacturing, 1998, 11(2): 217–224 https://doi.org/10.1109/66.670164
30
Baltes H, Paul O, Brand O. Micromachined thermally based CMOS microsensors. Proceedings of the IEEE, 1998, 86(8): 1660–1678
31
Lenggenhager R, Baltes H, Peer J, et al. Thermoelectric infrared sensors by CMOS technology. IEEE Electron Device Letters, 1992, 13(9): 454–456 https://doi.org/10.1109/55.192792
32
Eriguchi K, Ono K. Quantitative and comparative characterizations of plasma process-induced damage in advanced metal-oxide-semiconductor devices. Journal of Physics D: Applied Physics, 2008, 41(2): 024002 https://doi.org/10.1088/0022-3727/41/2/024002
33
Li T, Liu Y, Zhou P, et al. High yield front-etched structure for CMOS compatible IR detector. In: Proceedings of IEEE Sensors. IEEE, 2007, 500–502 https://doi.org/10.1109/ICSENS.2007.4388445
34
Xu D, Xiong B, Wang Y.Design, fabrication and characterization of front-etched micromachined thermopile for IR detection. Journal of Micromechanics and Microengineering, 2010, 20(11): 115004 https://doi.org/10.1088/0960-1317/20/11/115004
35
Xu D, Xiong B, Wu G, et al. Isotropic silicon etching with XeF2 gas for wafer-level micromachining applications. Journal of Microelectromechanical Systems, 2012, 21(6): 1436–1444 https://doi.org/10.1109/JMEMS.2012.2209403
Roncaglia A, Mancarella F, Cardinali G C. CMOS-compatible fabrication of thermopiles with high sensitivity in the 3–5 μm atmospheric window. Sensors and Actuators B: Chemical, 2007, 125(1): 214–223 https://doi.org/10.1016/j.snb.2007.02.018
39
Hirota M, Nakajima Y, Saito M, et al. 120×90 element thermoelectric infrared focal plane array with precisely patterned Au-black absorber. Sensors and Actuators A: Physical, 2007, 135(1): 146–151 https://doi.org/http://dx.doi.org/10.1016/j.sna.2006.06.058
40
Chen X, Tang J, Xu G, et al. Process development of a novel wafer level packaging with TSV applied in high-frequency range transmission. Microsystem Technologies, 2013, 19(4): 483–491 https://doi.org/10.1007/s00542-012-1712-9
41
Chen X, Xu G, Luo L. Development of seed layer deposition and fast copper electroplating into deep microvias for three-dimension integration. Micro & Nano Letters, 2013, 8(8): 191–192 https://doi.org/10.1049/mnl.2012.0801
42
Chen X, Yan P, Tang J, et al. Development of wafer level glass frit bonding by using barrier trench technology and precision screen printing. Microelectronic Engineering, 2012, 100(100): 6–11 https://doi.org/10.1016/j.mee.2012.07.116
43
Xu D, Jing E, Xiong B, et al.Wafer-level vacuum packaging of micromachined thermoelectric IR sensors. IEEE Transactions on Advanced Packaging, 2010, 33(4): 904–911 https://doi.org/10.1109/TADVP.2010.2072925
44
Xu D, Xiong B, Wang Y. Micromachined thermopile IR detector module with high performance. IEEE Photonics Technology Letters, 2011, 23(3): 149–151 https://doi.org/10.1109/LPT.2010.2095455