Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

邮发代号 80-976

Frontiers of Optoelectronics  2018, Vol. 11 Issue (1): 2-22   https://doi.org/10.1007/s12200-017-0753-1
  本期目录
Two-dimensional material functional devices enabled by direct laser fabrication
Tieshan YANG, Han LIN, Baohua JIA()
Centre for Micro-Photonics, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
 全文: PDF(1167 KB)   HTML
Abstract

During the past decades, atomically thin, two-dimensional (2D) layered materials have attracted tremendous research interest on both fundamental properties and practical applications because of their extraordinary mechanical, thermal, electrical and optical properties, which are distinct from their counterparts in the bulk format. Various fabrication methods, such as soft-lithography, screen-printing, colloidal-templating and chemical/dry etching have been developed to fabricate micro/nanostructures in 2D materials. Direct laser fabrication with the advantages of unique three-dimensional (3D) processing capability, arbitrary-shape designability and high fabrication accuracy up to tens of nanometers, which is far beyond the optical diffraction limit, has been widely studied and applied in the fabrication of various micro/nanostructures of 2D materials for functional devices. This timely review summarizes the laser-matter interaction on 2D materials and the significant advances on laser-assisted 2D materials fabrication toward diverse functional photonics, optoelectronics, and electrochemical energy storage devices. The perspectives and challenges in designing and improving laser fabricated 2D materials devices are discussed as well.

Key wordstwo-dimensional (2D) materials    direct laser fabrication    laser thinning    laser doping    photonics and optoelectronics devices    electrochemical energy storage
收稿日期: 2017-08-07      出版日期: 2018-04-02
Corresponding Author(s): Baohua JIA   
 引用本文:   
. [J]. Frontiers of Optoelectronics, 2018, 11(1): 2-22.
Tieshan YANG, Han LIN, Baohua JIA. Two-dimensional material functional devices enabled by direct laser fabrication. Front. Optoelectron., 2018, 11(1): 2-22.
 链接本文:  
https://academic.hep.com.cn/foe/CN/10.1007/s12200-017-0753-1
https://academic.hep.com.cn/foe/CN/Y2018/V11/I1/2
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
1 Zhang H. Ultrathin two-dimensional nanomaterials. ACS Nano, 2015, 9(10): 9451–9469
https://doi.org/10.1021/acsnano.5b05040 pmid: 26407037
2 Ponraj J S, Xu Z Q, Dhanabalan S C, Mu H, Wang Y, Yuan J, Li P, Thakur S, Ashrafi M, Mccoubrey K, Zhang Y, Li S, Zhang H, Bao Q. Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology, 2016, 27(46): 462001
https://doi.org/10.1088/0957-4484/27/46/462001 pmid: 27780158
3 Xia F N, Wang H, Xiao D, Dubey M, Ramasubramaniam A. Two-dimensional material nanophotonics. Nature Photonics, 2014, 8(12): 899–907
https://doi.org/10.1038/nphoton.2014.271
4 Brar V W, Koltonow A R, Huang J X. New discoveries and opportunities from two-dimensional Materials. ACS Photonics, 2017, 4(3): 407–411
https://doi.org/10.1021/acsphotonics.7b00194
5 Novoselov K S, Fal′ko V I, Colombo L, Gellert P R, Schwab M G, Kim K. A roadmap for graphene. Nature, 2012, 490(7419): 192–200
https://doi.org/10.1038/nature11458 pmid: 23060189
6 Zhang Y B, Rubio A, Lay G L. Emergent elemental two-dimensional materials beyond graphene. Journal of Physics. D, Applied Physics, 2017, 50(5): 053004
https://doi.org/10.1088/1361-6463/aa4e8b
7 Bhimanapati G R, Lin Z, Meunier V, Jung Y, Cha J, Das S, Xiao D, Son Y, Strano M S, Cooper V R, Liang L, Louie S G, Ringe E, Zhou W, Kim S S, Naik R R, Sumpter B G, Terrones H, Xia F, Wang Y, Zhu J, Akinwande D, Alem N, Schuller J A, Schaak R E, Terrones M, Robinson J A. Recent advances in two-dimensional materials beyond Graphene. ACS Nano, 2015, 9(12): 11509–11539
https://doi.org/10.1021/acsnano.5b05556 pmid: 26544756
8 Geim A K. Graphene: status and prospects. Science, 2009, 324(5934): 1530–1534
https://doi.org/10.1126/science.1158877 pmid: 19541989
9 Bonaccorso F, Sun Z P, Hasan T, Ferrari A C. Graphene photonics and optoelectronics. Nature Photonics, 2010, 4(9): 611–622
https://doi.org/10.1038/nphoton.2010.186
10 Mak K F, Shan J. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nature Photonics, 2016, 10(4): 216–226
https://doi.org/10.1038/nphoton.2015.282
11 Xia F, Wang H, Jia Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, 2014, 5: 4458
https://doi.org/10.1038/ncomms5458 pmid: 25041752
12 Castellanos-Gomez A. Black phosphorus: Narrow gap, wide applications. The Journal of Physical Chemistry Letters, 2015, 6(21): 4280–4291
https://doi.org/10.1021/acs.jpclett.5b01686 pmid: 26600394
13 Dou L, Wong A B, Yu Y, Lai M, Kornienko N, Eaton S W, Fu A, Bischak C G, Ma J, Ding T, Ginsberg N S, Wang L W, Alivisatos A P, Yang P. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science, 2015, 349(6255): 1518–1521
https://doi.org/10.1126/science.aac7660 pmid: 26404831
14 Huo C X, Cai B, Yuan Z, Ma B W, Zeng H B. Two-dimensional metal halide perovskites: theory, synthesis, and optoelectronics. Small Methods, 2017, 1(3): 1600018
https://doi.org/10.1002/smtd.201600018
15 Chen S, Shi G. Two-dimensional materials for halide perovskite-based optoelectronic devices. Advanced Materials, 2017, 29(24): 1605448
https://doi.org/10.1002/adma.201605448 pmid: 28256781
16 Choi D G, Jeong J H, Sim Y S, Lee E S, Kim W S, Bae B S. Fluorinated organic-inorganic hybrid mold as a new stamp for nanoimprint and soft lithography. Langmuir, 2005, 21(21): 9390–9392
https://doi.org/10.1021/la0513205 pmid: 16207009
17 Pardo D A, Jabbour G E, Peyghambarian N. Application of screen printing in the fabrication of organic light-emitting devices. Advanced Materials, 2000, 12(17): 1249–1252
https://doi.org/10.1002/1521-4095(200009)12:17<1249::AID-ADMA1249>3.0.CO;2-Y
18 Caruso F. Hollow capsule processing through colloidal templating and self-assembly. Chemistry (Weinheim an der Bergstrasse, Germany), 2000, 6(3): 413–419
https://doi.org/10.1002/(SICI)1521-3765(20000204)6:3<413::AID-CHEM413>3.0.CO;2-9 pmid: 10747405
19 Zhang J C, Zhou M J, Wu W D, Tang Y J. Fabrication of diamond microstructures by using dry and wet etching methods. Plasma Science & Technology, 2013, 15(6): 552–554
https://doi.org/10.1088/1009-0630/15/6/12
20 Zhang Y L, Guo L, Wei S, He Y Y, Xia H, Chen Q D, Sun H B, Xiao F S. Direct imprinting of microcircuits on graphene oxides film by femtosecond laser reduction. Nano Today, 2010, 5(1): 15–20
https://doi.org/10.1016/j.nantod.2009.12.009
21 Zhang Y L, Chen Q D, Xia H, Sun H B. Designable 3D nanofabrication by femtosecond laser direct writing. Nano Today, 2010, 5(5): 435–448
https://doi.org/10.1016/j.nantod.2010.08.007
22 Zheng X R, Lin H, Yang T S, Jia B H. Laser trimming of graphene oxide for functional photonic applications. Journal of Physics D, Applied Physics, 2017, 50(7): 074003
https://doi.org/10.1088/1361-6463/aa54e9
23 Yu S, Wu X, Wang Y, Guo X, Tong L. 2D materials for optical modulation: challenges and opportunities. Advanced Materials, 2017, 29(14): 1606128
https://doi.org/10.1002/adma.201606128 pmid: 28220971
24 Sun Z P, Martinez A, Wang F. Optical modulators with 2D layered materials. Nature Photonics, 2016, 10(4): 227–238
https://doi.org/10.1038/nphoton.2016.15
25 Wang F Q. Two-dimensional materials for ultrafast lasers. Chinese Physics B, 2017, 26(3): 034202
https://doi.org/10.1088/1674-1056/26/3/034202
26 Yoo J H, Kim E, Hwang D J. Femtosecond laser patterning, synthesis, defect formation, and structural modification of atomic layered materials. MRS Bulletin, 2016, 41(12): 1002–1008
https://doi.org/10.1557/mrs.2016.248
27 Li Z W, Hu Y H, Li Y, Fang Z Y. Light-matter interaction of 2D materials: physics and device applications. Chinese Physics B, 2017, 26(3): 036802
https://doi.org/10.1088/1674-1056/26/3/036802
28 Ye M X, Zhang D Y, Yap Y K. Recent advances in electronic and optoelectronic devices based on two-dimensional transition metal dichalcogenides. Electronics (Basel), 2017, 6(2): 43
https://doi.org/10.3390/electronics6020043
29 Zhao Y, Han Q, Cheng Z H, Jiang L, Qu L T. Integrated graphene systems by laser irradiation for advanced devices. Nano Today, 2017, 12: 14–30
https://doi.org/10.1016/j.nantod.2016.12.010
30 Lu J, Liu H, Tok E S, Sow C H. Interactions between lasers and two-dimensional transition metal dichalcogenides. Chemical Society Reviews, 2016, 45(9): 2494–2515
https://doi.org/10.1039/C5CS00553A pmid: 27141556
31 Xiong W, Zhou Y S, Hou W J, Jiang L J, Mahjouri-Samani M, Park J, He X N, Gao Y, Fan L S, Baldacchini T, Silvanin J F, Lu Y F. Laser-based micro/nanofabrication in one, two and three dimensions. Frontiers of Optoelectronics, 2015, 8(4): 351–378
https://doi.org/10.1007/s12200-015-0481-3
32 Xiong W, Zhou Y S, Hou W J, Jiang L J, Gao Y, Fan L S, Jiang L, Silvain J F, Lu Y F. Direct writing of graphene patterns on insulating substrates under ambient conditions. Scientific Reports, 2014, 4(1): 4892
https://doi.org/10.1038/srep04892 pmid: 24809639
33 Zhang Y L, Guo L, Xia H, Chen Q D, Feng J, Sun H B. Photoreduction of graphene oxides: methods, properties, and applications. Advanced Optical Materials, 2014, 2(1): 10–28
https://doi.org/10.1002/adom.201300317
34 Cote L J, Cruz-Silva R, Huang J. Flash reduction and patterning of graphite oxide and its polymer composite. Journal of the American Chemical Society, 2009, 131(31): 11027–11032
https://doi.org/10.1021/ja902348k pmid: 19601624
35 Gilje S, Dubin S, Badakhshan A, Farrar J, Danczyk S A, Kaner R B. Photothermal deoxygenation of graphene oxide for patterning and distributed ignition applications. Advanced Materials, 2010, 22(3): 419–423
https://doi.org/10.1002/adma.200901902 pmid: 20217732
36 Koinuma M, Ogata C, Kamei Y, Hatakeyama K, Tateishi H, Watanabe Y, Taniguchi T, Gezuhara K, Hayami S, Funatsu A, Sakata M, Kuwahara Y, Kurihara S, Matsumoto Y. Photochemical engineering of graphene oxide nanosheets. Journal of Physical Chemistry C, 2012, 116(37): 19822–19827
https://doi.org/10.1021/jp305403r
37 Li X H, Chen J S, Wang X, Schuster M E, Schlögl R, Antonietti M. A green chemistry of graphene: photochemical reduction towards monolayer graphene sheets and the role of water adlayers. ChemSusChem, 2012, 5(4): 642–646
https://doi.org/10.1002/cssc.201100467 pmid: 22415902
38 Stroyuk A L, Andryushina N S, Shcherban’ N D, Il’in V G, Efanov V S, Yanchuk I B, Kuchmii S Y, Pokhodenko V D. Photochemical reduction of graphene oxide in colloidal solution. Theoretical and Experimental Chemistry, 2012, 48(1): 2–13
https://doi.org/10.1007/s11237-012-9235-0
39 Castellanos-Gomez A, Barkelid M, Goossens A M, Calado V E, van der Zant H S J, Steele G A. Laser-thinning of MoS2: on demand generation of a single-layer semiconductor. Nano Letters, 2012, 12(6): 3187–3192
https://doi.org/10.1021/nl301164v pmid: 22642212
40 Han G H, Chae S J, Kim E S, Güneş F, Lee I H, Lee S W, Lee S Y, Lim S C, Jeong H K, Jeong M S, Lee Y H. Laser thinning for monolayer graphene formation: heat sink and interference effect. ACS Nano, 2011, 5(1): 263–268
https://doi.org/10.1021/nn1026438 pmid: 21174409
41 Lu J, Carvalho A, Chan X K, Liu H, Liu B, Tok E S, Loh K P, Castro Neto A H, Sow C H. Atomic healing of defects in transition metal dichalcogenides. Nano Letters, 2015, 15(5): 3524–3532
https://doi.org/10.1021/acs.nanolett.5b00952 pmid: 25923457
42 Cho S, Kim S, Kim J H, Zhao J, Seok J, Keum D H, Baik J, Choe D H, Chang K J, Suenaga K, Kim S W, Lee Y H, Yang H. Phase patterning for ohmic homojunction contact in MoTe2. Science, 2015, 349(6248): 625–628
https://doi.org/10.1126/science.aab3175 pmid: 26250680
43 Lu J, Wu J, Carvalho A, Ziletti A, Liu H, Tan J, Chen Y, Castro Neto A H, Özyilmaz B, Sow C H. Bandgap engineering of phosphorene by laser oxidation toward functional 2D materials. ACS Nano, 2015, 9(10): 10411–10421
https://doi.org/10.1021/acsnano.5b04623 pmid: 26364647
44 Guo L, Zhang Y L, Han D D, Jiang H B, Wang D, Li X B, Xia H, Feng J, Chen Q D, Sun H B. Laser‐mediated programmable N doping and simultaneous reduction of graphene oxides. Advanced Optical Materials, 2014, 2(2): 120–125
https://doi.org/10.1002/adom.201300401
45 Savva K, Lin Y H, Petridis C, Kymakis E, Anthopoulos T D, Stratakis E. In situ photo-induced chemical doping of solution-processed graphene oxide for electronic applications. Journal of Materials Chemistry C, Materials for Optical and Electronic Devices, 2014, 2(29): 5931–5937
https://doi.org/10.1039/C4TC00404C
46 Kim E, Ko C, Kim K, Chen Y, Suh J, Ryu S G, Wu K, Meng X, Suslu A, Tongay S, Wu J, Grigoropoulos C P. Site selective doping of ultrathin metal dichalcogenides by laser‐sssisted reaction. Advanced Materials, 2016, 28(2): 341–346
https://doi.org/10.1002/adma.201503945 pmid: 26567761
47 Zhang Y L, Xia H, Kim E, Sun H B. Recent developments in superhydrophobic surfaces with unique structural and functional properties. Soft Matter, 2012, 8(44): 11217–11231
https://doi.org/10.1039/c2sm26517f
48 Jiang H B, Zhang Y L, Han D D, Xia H, Feng J, Chen Q D, Hong Z R, Sun H B. Bioinspired fabrication of superhydrophobic graphene films by two-beam laser interference. Advanced Functional Materials, 2014, 24(29): 4595–4602
https://doi.org/10.1002/adfm.201400296
49 Xie Q, Hong M H, Tan H L, Chen G X, Shi L P, Chong T C. Fabrication of nanostructures with laser interference lithography. Journal of Alloys and Compounds, 2008, 449(1-2): 261–264
https://doi.org/10.1016/j.jallcom.2006.02.115
50 Zheng X, Jia B, Lin H, Qiu L, Li D, Gu M. Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing. Nature Communications, 2015, 6: 8433
https://doi.org/10.1038/ncomms9433 pmid: 26391504
51 Lin H, Xu Z Q, Bao Q L, Jia B H. Laser fabricated ultrathin flat lens in sub-nanometer thick monolayer transition metal dichalcogenides crystal. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), 2016, SF2E.4, 1–2
52 Yu N, Capasso F. Flat optics with designer metasurfaces. Nature Materials, 2014, 13(2): 139–150
https://doi.org/10.1038/nmat3839 pmid: 24452357
53 Zheng X R. The optics and applications of graphene oxide. Dissertation for the Doctoral Degree. Australia: Swinburne University of Technology, 2016
54 Zheng X R, Cao Z, Jia B H, Qiu L, Li D, Gu M. Direct patterning of C-shape arrays on graphene oxide thin films using direct laser printing. In: Proceedings of Frontiers in Optics 2014. Tucson, Arizona: Optical Society of America, FW2B
55 Bao Q L, Zhang H, Wang B, Ni Z H, Lim C H Y X, Wang Y, Tang D Y, Loh K P. Broadband graphene polarizer. Nature Photonics, 2011, 5(7): 411–415
https://doi.org/10.1038/nphoton.2011.102
56 Jia B H, Zheng X R, Lin H, Yang Y Y, Fraser S. Graphene oxide thin films for functional photonic devices. In: Proceedings of Frontiers in Optics 2016. Rochester, New York: Optical Society of America, FTu5B.4
57 Kim Y D, Bae M H, Seo J T, Kim Y S, Kim H, Lee J H, Ahn J R, Lee S W, Chun S H, Park Y D. Focused-laser-enabled p-n junctions in graphene field-effect transistors. ACS Nano, 2013, 7(7): 5850–5857
https://doi.org/10.1021/nn402354j pmid: 23782162
58 El-Kady M F, Kaner R B. Direct laser writing of graphene electronics. ACS Nano, 2014, 8(9): 8725–8729
https://doi.org/10.1021/nn504946k pmid: 25215512
59 Seo B H, Youn J, Shim M. Direct laser writing of air-stable p-n junctions in graphene. ACS Nano, 2014, 8(9): 8831–8836
https://doi.org/10.1021/nn503574p pmid: 25075554
60 Kymakis E, Petridis C, Anthopoulos T D, Stratakis E. Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(1): 106–115
https://doi.org/10.1109/JSTQE.2013.2273414
61 Kymakis E, Savva K, Stylianakis M M, Fotakis C, Stratakis E. Flexible organic photovoltaic cells with in situ nonthermal photoreduction of spin-coated graphene oxide electrodes. Advanced Functional Materials, 2013, 23(21): 2742–2749
https://doi.org/10.1002/adfm.201202713
62 Cao D H, Stoumpos C C, Farha O K, Hupp J T, Kanatzidis M G. 2D homologous perovskites as light-absorbing materials for solar cell applications. Journal of the American Chemical Society, 2015, 137(24): 7843–7850
https://doi.org/10.1021/jacs.5b03796 pmid: 26020457
63 Tsai H, Nie W, Blancon J C, Stoumpos C C, Asadpour R, Harutyunyan B, Neukirch A J, Verduzco R, Crochet J J, Tretiak S, Pedesseau L, Even J, Alam M A, Gupta G, Lou J, Ajayan P M, Bedzyk M J, Kanatzidis M G, Mohite A D. High-efficiency two-dimensional Ruddlesden-Popper perovskite solar cells. Nature, 2016, 536(7616): 312–316
https://doi.org/10.1038/nature18306 pmid: 27383783
64 Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z, Xiong Q. Room temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Letters, 2017, 17(6): 3982–3988
https://doi.org/10.1021/acs.nanolett.7b01956 pmid: 28541055
65 Kanaujia P K, Vijaya Prakash G. Laser-induced microstructuring of two-dimensional layered inorganic-organic perovskites. Physical Chemistry Chemical Physics, 2016, 18(14): 9666–9672
https://doi.org/10.1039/C6CP00357E pmid: 26996747
66 Chou S S, Swartzentruber B S, Janish M T, Meyer K C, Biedermann L B, Okur S, Burckel D B, Carter C B, Kaehr B. Laser direct write synthesis of lead halide perovskites. The Journal of Physical Chemistry Letters, 2016, 7(19): 3736–3741
https://doi.org/10.1021/acs.jpclett.6b01557 pmid: 27593712
67 Zheng X, Jia B, Chen X, Gu M. In situ third-order non-linear responses during laser reduction of graphene oxide thin films towards on-chip non-linear photonic devices. Advanced Materials, 2014, 26(17): 2699–2703
https://doi.org/10.1002/adma.201304681 pmid: 24639376
68 Fraser S, Zheng X R, Qiu L, Li D, Jia B H. Enhanced optical nonlinearities of hybrid graphene oxide films functionalized with gold nanoparticles. Applied Physics Letters, 2015, 107(3): 031112
https://doi.org/10.1063/1.4927387
69 Ren J, Zheng X R, Tian Z, Li D, Wang P, Jia B H. Giant third-order nonlinearity from low-loss electrochemical graphene oxide film with a high power stability. Applied Physics Letters, 2016, 109(22): 221105
https://doi.org/10.1063/1.4969068
70 Thangavelu P, Jong-Beom B.Graphene based 2D-materials for supercapacitors. 2D Materials, 2015, 2: 032002
71 Dong Y, Wu Z S, Ren W C, Cheng H M, Bao X H. Graphene: a promising 2D material for electrochemical energy storage. Science Bulletin, 2017, 62(10): 724–740
https://doi.org/10.1016/j.scib.2017.04.010
72 Shao Y, El-Kady M F, Wang L J, Zhang Q, Li Y, Wang H, Mousavi M F, Kaner R B. Graphene-based materials for flexible supercapacitors. Chemical Society Reviews, 2015, 44(11): 3639–3665
https://doi.org/10.1039/C4CS00316K pmid: 25898904
73 Raccichini R, Varzi A, Passerini S, Scrosati B. The role of graphene for electrochemical energy storage. Nature Materials, 2015, 14(3): 271–279
https://doi.org/10.1038/nmat4170 pmid: 25532074
74 Lv W, Li Z J, Deng Y Q, Yang Q H, Kang F Y. Graphene-based materials for electrochemical energy storage devices: Opportunities and challenges. Energy Storage Materials, 2016, 2: 107–138
https://doi.org/10.1016/j.ensm.2015.10.002
75 Yang X, Cheng C, Wang Y, Qiu L, Li D. Liquid-mediated dense integration of graphene materials for compact capacitive energy storage. Science, 2013, 341(6145): 534–537
https://doi.org/10.1126/science.1239089 pmid: 23908233
76 El-Kady M F, Strong V, Dubin S, Kaner R B. Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science, 2012, 335(6074): 1326–1330
https://doi.org/10.1126/science.1216744 pmid: 22422977
77 El-Kady M F, Kaner R B. Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage. Nature Communications, 2013, 4: 1475
https://doi.org/10.1038/ncomms2446 pmid: 23403576
78 Gao W, Singh N, Song L, Liu Z, Reddy A L M, Ci L, Vajtai R, Zhang Q, Wei B, Ajayan P M. Direct laser writing of micro-supercapacitors on hydrated graphite oxide films. Nature Nanotechnology, 2011, 6(8): 496–500
https://doi.org/10.1038/nnano.2011.110 pmid: 21804554
79 Yan Z X, Zhang Y L, Wang W, Fu X Y, Jiang H B, Liu Y Q, Verma P, Kawata S, Sun H B. Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference. ACS Applied Materials & Interfaces, 2015, 7(49): 27059–27065
https://doi.org/10.1021/acsami.5b09128 pmid: 26595745
80 Wan X, Huang Y, Chen Y. Focusing on energy and optoelectronic applications: a journey for graphene and graphene oxide at large scale. Accounts of Chemical Research, 2012, 45(4): 598–607
https://doi.org/10.1021/ar200229q pmid: 22280410
81 Ding X, Liu H, Fan Y. Graphene‐based materials in regenerative medicine. Advanced Healthcare Materials, 2015, 4(10): 1451–1468
https://doi.org/10.1002/adhm.201500203 pmid: 26037920
82 Guo W, Wang S, Yu X, Qiu J, Li J, Tang W, Li Z, Mou X, Liu H, Wang Z. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells. Nanoscale, 2016, 8(4): 1897–1904
https://doi.org/10.1039/C5NR06602F pmid: 26750302
83 Lorenzoni M, Brandi F, Dante S, Giugni A, Torre B. Simple and effective graphene laser processing for neuron patterning application. Scientific Reports, 2013, 3(1): 1954
https://doi.org/10.1038/srep01954 pmid: 23739674
84 Peláez R J, González-Mayorga A, Gutiérrez M C, García-Rama C, Afonso C N, Serrano M C. Tailored fringed platforms produced by laser interference for aligned neural cell growth. Macromolecular Bioscience, 2016, 16(2): 255–265
https://doi.org/10.1002/mabi.201500253 pmid: 26439882
85 Tao W, Zhu X, Yu X, Zeng X, Xiao Q, Zhang X, Ji X, Wang X, Shi J, Zhang H, Mei L. Black phosphorus nanosheets as a robust delivery platform for cancer theranostics. Advanced Materials, 2017, 29(1): 1603276
https://doi.org/10.1002/adma.201603276 pmid: 27797119
86 Sun Z, Xie H, Tang S, Yu X F, Guo Z, Shao J, Zhang H, Huang H, Wang H, Chu P K. Ultrasmall black phosphorus quantum dots: synthesis and use as photothermal agents. Angewandte Chemie International Edition, 2015, 54(39): 11526–11530
https://doi.org/10.1002/anie.201506154 pmid: 26296530
87 Shao J, Xie H, Huang H, Li Z, Sun Z, Xu Y, Xiao Q, Yu X F, Zhao Y, Zhang H, Wang H, Chu P K. Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy. Nature Communications, 2016, 7: 12967
https://doi.org/10.1038/ncomms12967 pmid: 27686999
88 Gan Z, Cao Y, Evans R A, Gu M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nature Communications, 2013, 4: 2061
https://doi.org/10.1038/ncomms3061 pmid: 23784312
89 Lin H, Jia B, Gu M. Dynamic generation of Debye diffraction-limited multifocal arrays for direct laser printing nanofabrication. Optics Letters, 2011, 36(3): 406–408
https://doi.org/10.1364/OL.36.000406 pmid: 21283205
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed