Please wait a minute...
Frontiers of Optoelectronics

ISSN 2095-2759

ISSN 2095-2767(Online)

CN 10-1029/TN

邮发代号 80-976

Frontiers of Optoelectronics  2024, Vol. 17 Issue (1): 2   https://doi.org/10.1007/s12200-024-00106-6
  本期目录
Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers
Zichuan Yuan1, Si Luo1,4, Ke Dai1, Xiankun Yao5, Chenning Tao1,4, Qiang Ling1,4, Yusheng Zhang1,4(), Zuguang Guan1,4, Daru Chen1,4, Yudong Cui2,3()
1. Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China
2. State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
3. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
4. Key Laboratory of Optical Information Detection and Display Technology of Zhejiang, Zhejiang Normal University, Jinhua 321004, China
5. School of Physics, Northwest University, Xi’an 710127, China
 全文: PDF(6093 KB)  
Abstract

The utilization of the dispersive Fourier transformation approach has enabled comprehensive observation of the birth process of dissipative solitons in fiber lasers. However, there is still a dearth of deep understanding regarding the extinction process of dissipative solitons. In this study, we have utilized a combination of experimental and numerical techniques to thoroughly examine the breathing dynamics of dissipative solitons during the extinction process in an Er-doped mode-locked fiber laser. The results demonstrate that the transient breathing dynamics have a substantial impact on the extinction stage of both steady-state and breathing-state dissipative solitons. The duration of transient breathing exhibits a high degree of sensitivity to variations in pump power. Numerical simulations are utilized to produce analogous breathing dynamics within the framework of a model that integrates equations characterizing the population inversion in a mode-locked laser. These results corroborate the role of Q-switching instability in the onset of breathing oscillations. Furthermore, these findings offer new possibilities for the advancement of various operational frameworks for ultrafast lasers.

Key wordsBreathing soliton    Fiber laser    Dispersive Fourier transform    Q-switched instability
收稿日期: 2023-10-26      出版日期: 2024-01-24
Corresponding Author(s): Yusheng Zhang,Yudong Cui   
 引用本文:   
. [J]. Frontiers of Optoelectronics, 2024, 17(1): 2.
Zichuan Yuan, Si Luo, Ke Dai, Xiankun Yao, Chenning Tao, Qiang Ling, Yusheng Zhang, Zuguang Guan, Daru Chen, Yudong Cui. Transient breathing dynamics during extinction of dissipative solitons in mode-locked fiber lasers. Front. Optoelectron., 2024, 17(1): 2.
 链接本文:  
https://academic.hep.com.cn/foe/CN/10.1007/s12200-024-00106-6
https://academic.hep.com.cn/foe/CN/Y2024/V17/I1/2
1 A. Hasegawa,: Soliton-based optical communications: an overview. IEEE J. Sel. Top. Quantum Electron. 6(6), 1161–1172 (2000)
https://doi.org/10.1109/2944.902164
2 D.J. Brady,: Optical imaging and spectroscopy. US Wiley-OSA (2009)
https://doi.org/10.1002/9780470443736
3 G.P. Agrawal,: Nonlinear Fiber Optics. Academic Press (2007)
https://doi.org/10.1016/B978-012369516-1/50011-X
4 T. Udem,, R. Holzwarth,, T.W. Hänsch,: Optical frequency metrology. Nature 416(6877), 233–237 (2002)
https://doi.org/10.1038/416233a
5 Y. Kivshar,, G. Agrawal,: Optical solitons: from fibers to photonic crystals. Academic Press (2003)
https://doi.org/10.1016/B978-012410590-4/50012-7
6 L. Huang,, Y. Zhang,, X. Liu,: Dynamics of carbon nanotube-based mode- locking fiber lasers. Nanophotonics 9(9), 2731–2761 (2020)
https://doi.org/10.1515/nanoph-2020-0269
7 Y. Zhang,, Y. Cui,, L. Huang,, L. Tong,, X. Liu,: Full-field realtime characterization of creeping solitons dynamics in a modelocked fiber laser. Opt. Lett. 45(22), 6246–6249 (2020)
https://doi.org/10.1364/OL.404778
8 Y.D. Cui,, X.M. Liu,, C. Zeng,: Conventional and dissipative solitons in a CFBG-based fiber laser mode-locked with a graphenenanotube mixture. Laser Phys. Lett. 11(5), 055106 (2014)
https://doi.org/10.1088/1612-2011/11/5/055106
9 X. Dong,, Q. Yang,, C. Spiess,, V.G. Bucklew,, W.H. Renninger,: Stretched-pulse soliton Kerr resonators. Phys. Rev. Lett. 125(3), 033902 (2020)
https://doi.org/10.1103/PhysRevLett.125.033902
10 F.W. Wise,, A. Chong,, W.H. Renninger,: High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion. Laser Photonics Rev. 2(1–2), 58–73 (2008)
https://doi.org/10.1002/lpor.200710041
11 M. Nie,, B. Li,, K. Jia,, Y. Xie,, J. Yan,, S. Zhu,, Z. Xie,, S.W. Huang,: Dissipative soliton generation and real-time dynamics in microresonator-filtered fiber lasers. Light Sci. Appl. 11(1), 296 (2022)
https://doi.org/10.1038/s41377-022-00998-z
12 J.M. Dudley,, C. Finot,, D.J. Richardson,, G. Millot,: Self-similarity in ultrafast nonlinear optics. Nat. Phys. 3(9), 597–603 (2007)
https://doi.org/10.1038/nphys705
13 C. Ma,, A. Khanolkar,, A. Chong,: High-performance tunable, self-similar fiber laser. Opt. Lett. 44(5), 1234–1236 (2019)
https://doi.org/10.1364/OL.44.001234
14 D. Mao,, Z. He,, Q. Gao,, C. Zeng,, L. Yun,, Y. Du,, H. Lu,, Z. Sun,, J. Zhao,: Birefringence-managed normal-dispersion fiber laser delivering energy-tunable chirp-free solitons. Ultrafast Sci. 2022, 9760631 (2022)
https://doi.org/10.34133/2022/9760631
15 D. Mao,, Z. He,, Y. Zhang,, Y. Du,, C. Zeng,, L. Yun,, Z. Luo,, T. Li,, Z. Sun,, J. Zhao,: Phase-matching-induced near-chirp-free solitons in normal-dispersion fiber lasers. Light Sci. Appl. 11(1), 25 (2022)
https://doi.org/10.1038/s41377-022-00713-y
16 M. Salhi,, A. Haboucha,, H. Leblond,, F. Sanchez,: Theoretical study of figure-eight all-fiber laser. Phys. Rev. A 77(3), 033828 (2008)
https://doi.org/10.1103/PhysRevA.77.033828
17 A. Komarov,, H. Leblond,, F. Sanchez,: Passive harmonic modelocking in a fiber laser with nonlinear polarization rotation. Opt. Commun. 267(1), 162–169 (2006)
https://doi.org/10.1016/j.optcom.2006.06.012
18 G.J. Spühler,, K.J. Weingarten,, R. Grange,, L. Krainer,, M. Haiml,, V. Liverini,, M. Golling,, S. Schön,, U. Keller,: Semiconductor saturable absorber mirror structures with low saturation fluence. Appl. Phys. B 81(1), 27–32 (2005)
https://doi.org/10.1007/s00340-005-1879-1
19 S.Y. Set,, H. Yaguchi,, Y. Tanaka,, M. Jablonski,, Y. Sakakibara,, A. Rozhin,, M. Tokumoto,, H. Kataura,, Y. Achiba,, K. Kikuchi,: Mode-locked fiber lasers based on a saturable absorber incorporating carbon nanotubes. In: Proceedings of Optical Fiber Communication Conference (Optical Society of America), p. PD44 (2003)
https://doi.org/10.1109/OFC.2003.316026
20 V. Scardaci,, Z. Sun,, F. Wang,, A.G. Rozhin,, T. Hasan,, F. Hennrich,, I.H. White,, W.I. Milne,, A.C. Ferrari,: Carbon nanotube polycarbonate composites for ultrafast lasers. Adv. Mater. 20(21), 4040–4043 (2008)
https://doi.org/10.1002/adma.200800935
21 J. Wang,, Y. Chen,, W.J. Blau,: Carbon nanotubes and nanotube composites for nonlinear optical devices. J. Mater. Chem. 19(40), 7425–7443 (2009)
https://doi.org/10.1039/b906294g
22 Z. Sun,, T. Hasan,, A.C. Ferrari,: Ultrafast lasers mode-locked by nanotubes and graphene. Phys. E Low-dimensional Syst. Nanostructures 44, 1082–1091 (2012)
https://doi.org/10.1016/j.physe.2012.01.012
23 M. Chernysheva,, A. Rozhin,, Y. Fedotov,, C. Mou,, R. Arif,, S.M. Kobtsev,, E.M. Dianov,, S.K. Turitsyn,: Carbon nanotubes for ultrafast fibre lasers. Nanophotonics 6(1), 1–30 (2017)
https://doi.org/10.1515/nanoph-2015-0156
24 Q. Bao,, H. Zhang,, J. Yang,, S. Wang,, D.Y. Tang,, R. Jose,, S. Ramakrishna,, C.T. Lim,, K.P. Loh,: Graphene–polymer nanofiber membrane for ultrafast photonics. Adv. Funct. Mater. 20(5), 782–791 (2010)
https://doi.org/10.1002/adfm.200901658
25 H. Mu,, S. Lin,, Z. Wang,, S. Xiao,, P. Li,, Y. Chen,, H. Zhang,, H. Bao,, S.P. Lau,, C. Pan,, D. Fan,, Q. Bao,: Black phosphorus–polymer composites for pulsed lasers. Adv. Opt. Mater. 3(10), 1447–1453 (2015)
https://doi.org/10.1002/adom.201500336
26 Z.C. Luo,, M. Liu,, H. Liu,, X.W. Zheng,, A.P. Luo,, C.J. Zhao,, H. Zhang,, S.C. Wen,, W.C. Xu,: 2 GHz passively harmonic modelocked fiber laser by a microfiber-based topological insulator saturable absorber. Opt. Lett. 38(24), 5212–5215 (2013)
https://doi.org/10.1364/OL.38.005212
27 F. Wang,: Two-dimensional materials for ultrafast lasers. Chin. Phys. B 26(3), 034202 (2017)
https://doi.org/10.1088/1674-1056/26/3/034202
28 S. Li,, C. Wang,, Y. Yin,, E. Lewis,, P. Wang,: Novel layered 2D materials for ultrafast photonics. Nanophotonics 9(7), 1743–1786 (2020)
https://doi.org/10.1515/nanoph-2020-0030
29 J. Liu,, F. Yang,, J. Lu,, S. Ye,, H. Guo,, H. Nie,, J. Zhang,, J. He,, B. Zhang,, Z. Ni,: High output mode-locked laser empowered by defect regulation in 2D Bi2O2Se saturable absorber. Nat. Commun. 13(1), 3855 (2022)
https://doi.org/10.1038/s41467-022-31606-8
30 Y. Zhang,, D. Lu,, H. Yu,, H. Zhang,: Low-dimensional saturable absorbers in the visible spectral region. Adv. Opt. Mater. 7(1), 1800886 (2019)
https://doi.org/10.1002/adom.201800886
31 U. Keller,: Recent developments in compact ultrafast lasers. Nature 424(6950), 831–838 (2003)
https://doi.org/10.1038/nature01938
32 T. Godin,, L. Sader,, A. Khodadad Kashi,, P.H. Hanzard,, A. Hideur,, D.J. Moss,, R. Morandotti,, G. Genty,, J.M. Dudley,, A. Pasquazi,, M. Kues,, B. Wetzel,: Recent advances on time-stretch dispersive Fourier transform and its applications. Adv. Phys. X 7(1), 2067487 (2022)
https://doi.org/10.1080/23746149.2022.2067487
33 Y. Wang,, C. Wang,, F. Zhang,, J. Guo,, C. Ma,, W. Huang,, Y. Song,, Y. Ge,, J. Liu,, H. Zhang,: Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Rep. Prog. Phys. 83(11), 116401 (2020)
https://doi.org/10.1088/1361-6633/abbcd7
34 G. Herink,, B. Jalali,, C. Ropers,, D.R. Solli,: Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics 10(5), 321–326 (2016)
https://doi.org/10.1038/nphoton.2016.38
35 X. Liu,, Y. Cui,: Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics 1(1), 016003 (2019)
https://doi.org/10.1117/1.AP.1.1.016003
36 Y. Cui,, X. Liu,: Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photon. Res. 7(4), 423–430 (2019)
https://doi.org/10.1364/PRJ.7.000423
37 I. Kudelin,, S. Sugavanam,, M. Chernysheva,: Build-up dynamics in bidirectional soliton fibre laser. Photon. Res. 8(6), 776–780 (2020)
https://doi.org/10.1364/PRJ.388988
38 Y. Zhang,, K. Dai,, B. Zhang,, D. Chen,, Z. Guan,, Y. Cui,: Investigations on pulse dynamics and offset spectral filtering in Er-doped Mamyshev fiber oscillator. Opt. Commun. 529, 129103 (2023)
https://doi.org/10.1016/j.optcom.2022.129103
39 C. Wang,, X. Li,, S. Zhang,: Automated start-up and extinction dynamics of a mamyshev oscillator based on a temperaturedependent filter. Laser Photonics Rev. 17(7), 2201016 (2023)
https://doi.org/10.1002/lpor.202201016
40 G. Wang,, G. Chen,, W. Li,, C. Zeng,, H. Yang,: Decaying evolution dynamics of double-pulse mode-locking. Photon. Res. 6(8), 825–829 (2018)
https://doi.org/10.1364/PRJ.6.000825
41 X. Ma,, K. Zhang,, C. Li,, K. Chen,, Y. Zhou,, W. Zhang,, W. Fang,, X. Chen,, S. Huang,, R. Yu,, M. Liao,, Y. Ohishi,, W. Gao,: Decaying dynamics of harmonic mode-locking in a SESAM-based mode-locked fiber laser. Opt. Express 31(22), 36350–36358 (2023)
https://doi.org/10.1364/OE.503737
42 J. Peng,, S. Boscolo,, Z. Zhao,, H. Zeng,: Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5(11), eaax1110 (2019)
https://doi.org/10.1126/sciadv.aax1110
43 X. Wu,, J. Peng,, S. Boscolo,, Y. Zhang,, C. Finot,, H. Zeng,: Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 16(2), 1–10 (2022)
https://doi.org/10.1002/lpor.202100191
44 Y. Zhou,, Y.X. Ren,, J. Shi,, K.K.Y. Wong,: Breathing dissipative soliton molecule switching in a bidirectional mode-locked fiber laser. Adv. Photon. Res. 3(4), 2100318 (2022)
https://doi.org/10.1002/adpr.202100318
45 J. Peng,, Z. Zhao,, S. Boscolo,, C. Finot,, S. Sugavanam,, D.V. Churkin,, H. Zeng,: Breather molecular complexes in a passively mode-locked fiber laser. Laser Photonics Rev. 15(7), 2000132 (2021)
https://doi.org/10.1002/lpor.202000132
46 K. Krupa,, K. Nithyanandan,, U. Andral,, P. Tchofo-Dinda,, P. Grelu,: Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118(24), 243901 (2017)
https://doi.org/10.1103/PhysRevLett.118.243901
47 Z.Q. Wang,, K. Nithyanandan,, A. Coillet,, P. Tchofo-Dinda,, P. Grelu,: Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 10(1), 830 (2019)
https://doi.org/10.1038/s41467-019-08755-4
48 G.P. Agrawal,, P.L. Christiansen,, M.P. Sørensen,, A.C. Scott,: Nonlinear fiber optics. Springer Berlin Heidelberg (2000)
49 Y. Cui,, Y. Zhang,, Y. Song,, L. Huang,, L. Tong,, J. Qiu,, X. Liu,: XPM-induced vector asymmetrical soliton with spectral period doubling in mode-locked fiber laser. Laser Photonics Rev. 15(3), 2000216 (2021)
https://doi.org/10.1002/lpor.202000216
50 E. Desurvire,, M.N. Zervas,: Erbium-doped fiber amplifiers: principles and applications. John Wiley & Sons, London (2002)
https://doi.org/10.1201/9780203904657.ch10
51 B. Pedersen,, A. Bjarklev,, O. Lumholt,, J.H. Povlsen,: Detailed design analysis of erbium-doped fiber amplifiers. IEEE Photonics Technol. Lett. 3(6), 548–550 (1991)
https://doi.org/10.1109/68.91031
52 M.S. Wartak,: Computational photonics: an introduction with MATLAB. Cambridge University Press (2013)
https://doi.org/10.1017/CBO9780511794247
53 D.D. Han,, X.M. Liu,, Y.D. Cui,, G.X. Wang,, C. Zeng,, L. Yun,: Simultaneous picosecond and femtosecond solitons delivered from a nanotube-mode-locked all-fiber laser. Opt. Lett. 39(6), 1565–1568 (2014)
https://doi.org/10.1364/OL.39.001565
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed