Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science in China  2009, Vol. 3 Issue (1): 48-52   https://doi.org/10.1007/s11706-009-0018-z
  COMMUNICATION 本期目录
Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing
Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing
Tamura KOZO, Zheng-cao LI, Yu-quan WANG, Jie NI, Yin HU, Zheng-jun ZHANG()
Advanced Materials Laboratory, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
 全文: PDF(378 KB)   HTML
Abstract

Thermal evaporation deposited vanadium oxide films were annealed in air by rapid thermal annealing (RTP). By adjusting the annealing temperature and time, a series of vanadium oxide films with various oxidation phases and surface morphologies were fabricated, and an oxidation phase growth diagram was established. It was observed that different oxidation phases appear at a limited and continuous annealing condition range, and the morphologic changes are related to the oxidation process.

Key wordsvanadium oxides (VOx)    rapid thermal annealing (RTA)    phase growth diagram
收稿日期: 2008-08-25      出版日期: 2009-03-05
Corresponding Author(s): ZHANG Zheng-jun,Email:zjzhang@tsinghua.edu.cn   
 引用本文:   
. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing[J]. Frontiers of Materials Science in China, 2009, 3(1): 48-52.
Tamura KOZO, Zheng-cao LI, Yu-quan WANG, Jie NI, Yin HU, Zheng-jun ZHANG. Oxidation phase growth diagram of vanadium oxides film fabricated by rapid thermal annealing. Front Mater Sci Chin, 2009, 3(1): 48-52.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-009-0018-z
https://academic.hep.com.cn/foms/CN/Y2009/V3/I1/48
Fig.1  
1#2#3#4#5#6#7#8#
RTA temperature /°C300350400450450500500550
RTA time /s1601800103001601200
Tab.1  
Fig.2  
Fig.3  
Fig.4  
1 Zhu Z P, Liu Z Y, Liu S J, . A novel carbon-supported vanadium oxide catalyst for NO reduction with NH3at low temperatures. Applied Catalysis B: Environmental , 1999, 23:L229–L233
doi: 10.1016/S0926-3373(99)00085-5
2 Liu J F, Wang X, Peng Q, . Vanadium pentoxide nanobelts highly selective and stable ethanol sensor material. Advanced Materials , 2005, 17: 764–767
doi: 10.1002/adma.200400993
3 Biette L, Carn F, Maugey M, . Macroscopic fibers of oriented vanadium oxide ribbons and their application as highly sensitive alcohol microsensors. Advanced Materials , 2005, 17: 2970–2974
doi: 10.1002/adma.200501368
4 Wang Y Q, Li Z C, Sheng X, . Synthesis and optical properties of V2O5 nanorods. Journal of Chemical Physics , 2007, 126(16): 164701
doi: 10.1063/1.2722746
5 Lee M-H, Kim M-G, Song H-K. Thermochromism of rapid thermal annealed VO2 and Sn-doped VO2 thin films. Thin Solid Films , 1996, 290-291: 30–33
doi: 10.1016/S0040-6090(96)09201-2
6 Saitzek S, Guirleo G, Guinneton F, . New thermochromic bilayers for optical or electronic switching systems. Thin Solid Films , 2004, 449: 166–172
doi: 10.1016/j.tsf.2003.10.013
7 Adler D, Feinleib J, Brooks H, . Semiconductor-to-metal transitions in transition-metal compounds. Physical Review , 1967, 155(3): 851–860
doi: 10.1103/PhysRev.155.851
8 Guinneton F, Sauques L, Valmalette J-C, . Optimized infrared switching properties in thermochromic vanadium dioxide thin films: role of deposition process and microstructure. Thin Solid Films , 2004, 446: 287–295
doi: 10.1016/j.tsf.2003.09.062
9 Lee Y W, Kim B-J, Lim J-W, . Metal-insulator transition-induced electrical oscillation in vanadium dioxide thin film. Applied Physics Letters , 2008, 92(16): 162903 (3 pages)
10 Wang H C, Yi X J, Chen S H, . Fabrication of vanadium oxide micro-optical switches. Sensors and Actuators A: Physical , 2005, 122: 108–112
doi: 10.1016/j.sna.2005.03.063
11 Kim B-J, Lee Y W, Chae B-G, . Temperature dependence of the first-order metal-insulator transition in VO2 and programmable critical temperature sensor. Applied Physics Letters , 2007, 90(2): 023515 (3 pages)
12 Subba ReddyC V, Jin A-P, Han X, . Preparation and characterization of (PVP+V2O5) cathode for battery applications. Electrochemistry Communications , 2006, 8(2): 279–283
doi: 10.1016/j.elecom.2005.11.025
13 Liu P, Lee S-H, Tracy C E, . Preparation and lithium insertion properties of mesoporous vanadium oxide. Advanced Materials , 2002, 14: 27–30
doi: 10.1002/1521-4095(20020104)14:1<27::AID-ADMA27>3.0.CO;2-6
14 Shembel E, Apostolova R, Nagirny V, . Interrelation between structural and electrochemical properties of the cathode based on vanadium oxide for rechargeable batteries. Journal of Power Sources , 1999, 81-82: 480–486
doi: 10.1016/S0378-7753(99)00206-2
15 Li H X, Jiao L F, Yuan H T, . Factors affecting the electrochemical performance of vanadium oxide nanotube cathode materials. Electrochemistry Communications , 2006, 8: 1693–1698
doi: 10.1016/j.elecom.2006.03.017
16 Talledo A, Granqvist C G. Electrochromic vanadium-pentoxide-based films: Structural, electrochemical, and optical properties. Journal of Applied Physics , 1995, 77: 4655–4666
doi: 10.1063/1.359433
17 Takahashi K, Wang Y, Cao G Z. Growth and electrochromic properties of single-crystal V2O5 nanorod arrays. Applied Physics Letters , 2005, 86(5): 053102 (3 pages)
18 Dai Z R, Pan Z W, Wang Z L. Novel nanostructures of functional oxides synthesized by thermal evaporation. Advanced Functional Materials , 2003, 13: 9–24
doi: 10.1002/adfm.200390013
19 Patzke G R, Krumeich F, Nesper R. Oxidic nanotubes and nanorods – anisotropic modules for a future nanotechnology. Angewandte Chemie International Edition , 2002, 41(14): 2446–2461
doi: 10.1002/1521-3773(20020715)41:14<2446::AID-ANIE2446>3.0.CO;2-K
20 O’Dwyer C, Navas D, Lavayen V, . Nano-urchin: the formation and structure of high-density spherical clusters of vanadium oxide nanotubes. Chemistry of Materials , 2006, 18: 3016–3022
doi: 10.1021/cm0603809
21 O’Dwyer C, Lavayen V, Newcomb S B, . Atomic layer structure of vanadium oxide nanotubes grown on nanourchin structures. Electrochemical and Solid-State Letters , 2007, 10: A111–A114
doi: 10.1149/1.2436645
22 Lavayen V, O’Dwyer C, Santa Ana M A, . Comparative structural-vibrational study of nano-urchin and nanorods of vanadium oxide. physica status solidi (b) , 2006, 243: 3285–3289
23 O’Dwyer C, Lavayen V, Fuenzalida D, . Six-fold rotationally symmetric vanadium oxide nanostructures by a morphotropic phase transition. physica status solidi (b) , 2007, 244: 4157–4160
24 Subba Reddy C V, Mho S, Kalluru R R, . Hydrothermal synthesis of hydrated vanadium oxide nanobelts using poly (ethylene oxide) as a template. Journal of Power Sources , 2008, 179: 854–857
doi: 10.1016/j.jpowsour.2008.01.014
25 Guiton B S, Gu Q, Prieto A L, . Single-crystalline vanadium dioxide nanowires with rectangular cross sections. Journal of the American Chemical Society , 2005, 127: 498–499
doi: 10.1021/ja045976g
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed