Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films
Electrochemical preparation and electrochemical behavior of polypyrrole/carbon nanotube composite films
Xue-tong ZHANG1,2(), Wen-hui SONG1
1. School of Materials Science & Engineering, Beijing Institute of Technology,; 2. Wolfson Center for Materials Processing, Brunel University, West London UB8 3PH, UK
Polypyrrole/multiwalled carbon nanotube (MWNT) composite films were electrochemically deposited in the presence of an ionic surfactant, sodium dodecyl sulfate (SDS), acting as both supporting electrolyte and dispersant. The effects of the surfactant and the MWNT concentrations on the structure of the resulting composite films were investigated. The electrochemical behavior of the resulting polypyrrole/MWNT composite film was investigated as well by cyclic voltammogram. The effect of the additional alternating electric field applied during the constant direct potential electrochemical deposition on the morphology and electrochemical behavior of the resulting composite film was also investigated in this study.
Odom T W, Huang J, Kim P, . Atomic structure and electronic properties of single-walled carbon nanotubes. Nature , 1998, 391: 62–64 doi: 10.1038/34145
2
Baughman R H, Zakhidov A A, de Heer W A. Carbon nanotubes-the route toward applications. Science , 2002, 297: 787–792 doi: 10.1126/science.1060928
3
Krishnan A, Dujardin E, Ebbesen T W. Young’s modulus of single-walled nanotubes. Physical Review B , 1998, 58: 14013–14019 doi: 10.1103/PhysRevB.58.14013
4
Dai H. Carbon nanotubes: synthesis, integration, and properties. Accounts of Chemical Research , 2002, 35(12): 1035–1044 doi: 10.1021/ar0101640
5
Harris P J F. Carbon nanotube composites. International Materials Reviews , 2004, 49: 31–43 doi: 10.1179/095066004225010505
6
Biercuk M J, Llaguno M C, Radosavljevic M., . Carbon nanotube composites for thermal management. Applied Physics Letters , 2002, 80: 2767–2769 doi: 10.1063/1.1469696
7
Woo H S, Czerw R, Webster S. Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene). Applied Physics Letters , 2000, 77: 1393–1395 doi: 10.1063/1.1290275
8
Qian D, Dickey E C, Andrews R, . Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Applied Physics Letters , 2000, 76: 2868–2870 doi: 10.1063/1.126500
Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Physical Review B , 2000, 62: 13104–13110 doi: 10.1103/PhysRevB.62.13104
11
Bahr J L, Yang J P, Kosynkin D V, . Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: a bucky paper electrode. Journal of the American Chemical Society , 2001, 123(27): 6536–6542 doi: 10.1021/ja010462s
12
Georgakilas V, Kordatos K, Prato M, . Organic functionalization of carbon nanotubes. Journal of the American Chemical Society , 2002, 124(5): 760–761 doi: 10.1021/ja016954m
13
Sun Y, Wilson S R, Schuster D I. High dissolution and strong light emission of carbon nanotubes in aromatic amine solvents. Journal of the American Chemical Society , 2001, 123(22): 5348–5349 doi: 10.1021/ja0041730
14
Chen R J, Zhang Y, Wang D, . Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. Journal of the American Chemical Society , 2001, 123(16): 3838–3839 doi: 10.1021/ja010172b
15
Kang Y, Taton T A. Micelle-encapsulated carbon nanotubes: a route to nanotube composites. Journal of the American Chemical Society , 2003, 125(19): 5650–5651 doi: 10.1021/ja034082d
16
Islam M F, Rojas E, Bergey D M, . High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Letters , 2003, 3(2): 269–273 doi: 10.1021/nl025924u
17
Patil A, Sippel J, Martin G W, . Enhanced functionality of nanotube atomic force microscopy tips by polymer coating. Nano Letters , 2004, 4(2): 303–308 doi: 10.1021/nl0350581
18
Zhang X T, Zhang J, Wang R M, . Surfactant-directed polypyrrole/CNT nanocables: synthesis, characterization, and enhanced electrical properties. ChemPhysChem , 2004, 5: 998–1002 doi: 10.1002/cphc.200301217
19
Zhang X T, Zhang J, Wang R M, . Cationic surfactant directed polyaniline/CNT nanocables: synthesis, characterization, and enhanced electrical properties. Carbon , 2004, 42: 1455–1461 doi: 10.1016/j.carbon.2004.01.003
20
Long Y Z, Chen Z J, Zhang X T, . Synthesis and electrical properties of carbon nanotube polyaniline composites. Applied Physics Letters , 2004, 85(10): 1796–1798 doi: 10.1063/1.1786370
21
Long Y Z, Chen Z J, Zhang X T, . Electrical properties of multi-walled carbon nanotube/polypyrrole nanocables: percolation-dominated conductivity. Journal of Physics D , 2004, 37: 1965–1969 doi: 10.1088/0022-3727/37/14/011
22
Zhang X T, Lu Z, Wen M T, . Single-walled carbon nanotube-based coaxial nanowires: synthesis, characterization, and electrical properties. The Journal of Physical Chemistry B , 2005, 109: 1101–1107 doi: 10.1021/jp045934e
23
Zhang X T, Zhang J, Liu Z F. Conducting polymer/carbon nanotube composite films made by in situ electropolymerization using an ionic surfactant as the supporting electrolyte. Carbon , 2005, 43: 2186–2191 doi: 10.1016/j.carbon.2005.03.034
24
Qian W Z, Wei F, Wang Z W, . Production of carbon nanotubes in a packed bed and a fluidized bed. AIChE Journal , 2003, 49(3): 619–625 doi: 10.1002/aic.690490308
25
Sayyah S M, Abd El-Rehim S S, El-Deeb M M. Electropolymerization of pyrrole and characterization of the obtained polymer films. Journal of Applied Polymer Science , 2003, 90(7): 1783–1792 doi: 10.1002/app.12793
26
Hughes M, Shaffer M S P, Renouf A C, . Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole. Advanced Materials , 2002, 14(5): 382–385 doi: 10.1002/1521-4095(20020304)14:5<382::AID-ADMA382>3.0.CO;2-Y
27
Ferraris J P, Eissa M M, Brotherston I D, . Performance evaluation of poly 3-(Phenylthiophene) derivatives as active materials for electrochemical capacitor applications. Chemistry of Materials , 1998, 10(11): 3528–3535 doi: 10.1021/cm9803105
28
Ingram M D, Staesche H, Ryder K S. ‘Activated’ polypyrrole electrodes for high-power supercapacitor applications. Solid State Ionics , 2004, 169(1-4): 51–57 doi: 10.1016/j.ssi.2002.12.003
29
West K, Bay L, Nielsen M M, . Electronic conductivity of polypyrrole-dodecyl benzene sulfonate complexes. The Journal of Physical Chemistry B , 2004, 108(39): 15001–15008 doi: 10.1021/jp048153m
30
Chen J H, Li W Z, Wang D Z, . Electrochemical characterization of carbon nanotubes as electrode in electrochemical double-layer capacitors. Carbon , 2002, 40(8): 1193–1197 doi: 10.1016/S0008-6223(01)00266-4
31
Frackowiak E, Delpeux S, Jurewicz K, . Enhanced capacitance of carbon nanotubes through chemical activation. Chemical Physics Letters , 2002, 361(1-2): 35–41 doi: 10.1016/S0009-2614(02)00684-X
32
Che G, Lakshmi B B, Fisher E R, . Carbon nanotubule membranes for electrochemical energy storage and production. Nature , 1998, 393: 346–249 doi: 10.1038/30694
33
Hughes M, Chen G Z, Shaffer M S P, . Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chemistry of Materials , 2002, 14(4): 1610–1613 doi: 10.1021/cm010744r
34
Jurewicz K, Delpeux S, Bertagna V, . Supercapacitors from nanotubes/polypyrrole composites. Chemical Physics Letters , 2001, 347(1-3): 36–40 doi: 10.1016/S0009-2614(01)01037-5