Abstract:Mesoporous silica nanospheres (MSNs) with regular pores have been fabricated using cetyltrimethylammonium bromide (CTAB) as surfactant in high pH solution. The average size of the MCM-41 silica nanospheres was reduced from 95 to 48€nm, while the concentration of CTAB increases from 7.7 to 11.5mmol/L. Carbon black was deposited on MSNs using hexane as the carbon source. By mixing such materials with silicone rubber, the composites become conducting when equivalent carbon volume fraction is higher than a certain region, which is less sensitive to the morphology of the deposited carbon. The improved piezoresistance repeatability has been found on the composite sample of MSNs/carbon plus extra high conducting carbon black. The load and strain sensitive range up to 0.35MPa and 0.10, respectively, with less resistance fluctuation during multiple press loading cycles.
Hussain M, Choa Y-H, Niihara K. Fabrication process and electrical behaviorof novel pressure-sensitive composites. Composites Part A: Applied Science and Manufacturing, 2001, 32(12): 1689–1696 doi: 10.1016/S1359-835X(01)00035-5
Yamaguchi K, Busfield J J C, Thomas A G. Electrical and mechanicalbehavior of filled elastomers. I. The effect of strain. Journal of Polymer Science Part B: Polymer Physics, 2003, 41(17): 2079–2089 doi: 10.1002/polb.10571
Busfield J J C, Thomas A G, Yamaguchi K. Electrical and mechanical behavior of filled rubber. III. Dynamic loading and the rate of recovery. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(13): 1649–1661 doi: 10.1002/polb.20452
Zhou J F, Song Y H, Zheng Q, et al. Percolation transition and hydrostaticpiezoresistance for carbon black filled poly(methylvinylsilioxane)vulcanizates. Carbon, 2008, 46(4): 679–691 doi: 10.1016/j.carbon.2008.01.028
Lalli J H, Hill A, Subrahmanyan S, et al. Metal Rubber sensors. Proceedings of SPIE, 2005, 5758: 333–342 doi: 10.1117/12.597738
Wang X J, Chung D D L. Short carbon fiber reinforced epoxy coating as a piezoresistive strain sensorfor cement mortar. Sensors and ActuatorsA: Physical, 1998, 71(3): 208–212 doi: 10.1016/S0924-4247(98)00187-3
Knite M, Teteris V, Kiploka A, et al. Polyisoprene-carbonblack nanocomposites as tensile strain and pressure sensor materials. Sensors and Actuators A: Physics, 2004, 110(1–3): 142–149 doi: 10.1016/j.sna.2003.08.006
Snyder W E, Clair J. Conductive elastomers as sensor for industrial parts handling equipment. IEEE Transaction on Instrumentation and Measurement, 1978, (IM-27): 94–102 doi: 10.1109/TIM.1978.4314628
Shimojo M, Namiki A, Ishikawa M, et al. A tactile sensor sheet usingpressure conductive rubber with electrical-wires stitched method. IEEE Sensors Journal, 2004, 4(5): 589–596 doi: 10.1109/JSEN.2004.833152
Wang L H, Ding T H, Wang P. Thin flexible pressure sensor array basedon carbon black/silicone rubber nanocomposite. IEEE Sensors Journal, 2009, 9(9): 1130–1135 doi: 10.1109/JSEN.2009.2026467
Sandler J K W, Kirk J E, Kinloch I A, et al. Ultra-low electricalpercolation threshold in carbon-nanotube-epoxy composites. Polymer, 2003, 44(19): 5893–5899 doi: 10.1016/S0032-3861(03)00539-1
Chen L, Chen GH, Lu L. Piezoresistive behavior study on finger-sensingsilicone rubber/graphite nanosheet nanocomposites. Advanced Functional Materials, 2007, 17(6): 898–904 doi: 10.1002/adfm.200600519
Abyaneh M K, Kulkarni S K. Giant piezoresistive response in zinc-polydimethylsiloxane compositesunder uniaxial pressure. Journal of Physics D: Applied Physics, 2008, 41(13): 135405 (7 pages)
Balberg I. Tunneling and nonuniversal conductivity in compositematerials. Physical Review Letters, 1987, 59(12): 1305–1308 doi: 10.1103/PhysRevLett.59.1305
Wu J Y, Zhou C X, Zhu Q W, et al. Composite silicone rubber ofhigh piezoresistance repeatability filled with nanoparticles. Science in China Series E:Technological Sciences, 2009, 52(12): 3497–3503 doi: 10.1007/s11431-009-0318-7
Cai Q, Luo Z S, Pang W Q, et al. Dilute solution routes to variouscontrollable morphologies of MCM-41 silica with a basic medium. Chemistry of Materials, 2001, 13(2): 258–263 doi: 10.1021/cm990661z
He Q J, Cui X Z, Cui F M, et al. Size-controlled synthesis ofmonodispersed mesoporous silica nano-spheres under a neutral condition. Microporous and Mesoporous Materials, 2009, 117(3): 609–616 doi: 10.1016/j.micromeso.2008.08.004
Ndungu P, Godongwana Z G, Petrik L F, et al. Synthesis of carbonnanostructured materials using LPG. Microporous and Mesoporous Materials, 2008, 116(1–3): 593–600 doi: 10.1016/j.micromeso.2008.05.030
Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporouscarbon with hexagonally ordered mesostructure. Journal of the American Chemical Society, 2000, 122(43): 10712–10713 doi: 10.1021/ja002261e
Zhai Y P, Wan Y, Cheng Y, et al. The influence of carbon sourceon the wall structure of ordered mesoporous carbons. Journal of Porous Materials, 2008, 15(5): 601–611 doi: 10.1007/s10934-007-9139-x
Lelong G, Bhattacharyya S, Kline S, et al. Effect of surfactantconcentration on the morphology and texture of MCM-41 materials. The Journal of Physical Chemistry C, 2008, 112(29): 10674–10680 doi: 10.1021/jp800898n