Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization
Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization
Xian-Kai LIN, Xia FENG, Li CHEN(), Yi-Ping ZHAO
State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, China
In this paper, poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) (PVDF-g-PNIPAAm) copolymers were synthesized directly via grafting temperature-sensitive material NIPAAm on PVDF by atom transfer radical polymerization (ATRP). The chemical structure of the graft copolymers was characterized by Fourier transform infrared (FTIR) and 1H-NMR spectroscopy. The temperature-sensitive membranes were prepared from the PVDF-g-PNIPAAm copolymers by the immersion precipitation process of the phase inversion method. The chemical composition and pore structure of the PVDF-g-PNIPAAm membranes were studied by X-ray photoelectron spectroscopy (XPS) and an automatic mercury porosimeter, respectively. The effects of temperature on pure water flux and bovine serum albumen (BSA) rejection ratio of the membranes were also investigated. The results showed that the grafted PNIPAAm chains tended to enrich on the surfaces of the membranes or the membrane pores during the membrane-forming process. Pore diameter and porosity of the copolymer membranes were larger than those of the pristine PVDF membranes. Also, the PVDF-g-PNIPAAm membranes could exhibit temperature-sensitive performance in water flux and BSA rejection measurements.
. Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization[J]. Frontiers of Materials Science in China, 2010, 4(4): 345-352.
Xian-Kai LIN, Xia FENG, Li CHEN, Yi-Ping ZHAO. Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization. Front Mater Sci Chin, 2010, 4(4): 345-352.
Liang L, Feng X D, Peurrung L, . Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. Journal of Membrane Science , 1999, 162(1-2): 235–246 doi: 10.1016/S0376-7388(99)00145-3
2
Alem H, Duwez A S, Lussis P, . Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes. Journal of Membrane Science , 2008, 308(1-2): 75–86 doi: 10.1016/j.memsci.2007.09.036
3
Li P F, Xie R, Jiang J C, . Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. Journal of Membrane Science , 2009, 337(1-2): 310–317 doi: 10.1016/j.memsci.2009.04.010
4
Yang W C, Xie R, Pang X Q, . Preparation and characterization of dual stimuli-responsive microcapsules with a superparamagnetic porous membrane and thermo-responsive gates. Journal of Membrane Science , 2008, 321(2): 324–330 doi: 10.1016/j.memsci.2008.05.016
5
Li Y, Chu L Y, Zhu J H, . Thermo-responsive gating characteristics of poly(N-isopropylacrylamide)-grafted porous poly(vinylidene fluoride) membranes. Industrial & Engineering Chemistry Research , 2004, 43(11): 2643–2649 doi: 10.1021/ie034334j
6
Ying L, Kang E T, Neoh K G. Synthesis and characterization of poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) copolymers and temperature-Sensitive Membranes. Langmuir , 2002, 18(16): 6416–6423 doi: 10.1021/la020241f
7
Ying L, Kang E T, Neoh K G, . Drug permeation through temperature-sensitive membranes prepared from poly(vinylidene fluoride) with grafted poly(N-isopropylacrylamide) chains. Journal of Membrane Science , 2004, 243(1-2): 253–262 doi: 10.1016/j.memsci.2004.06.028
8
Xu F J, Li J, Yuan S J, . Thermo-responsive porous membranes of controllable porous morphology from triblock copolymers of polycaprolactone and poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Biomacromolecules , 2008, 9(1): 331–339 doi: 10.1021/bm7008922
9
Kim S Y, Kanamori T, Shinbo T. Preparation of Thermal-responsive poly(propylene) membranes grafted with N-isopropylacrylamide by plasma-induced polymerization and their water permeation. Journal of Applied Polymer Science , 2002, 84(6): 1168–1177 doi: 10.1002/app.10410
10
Zhang Z B, Zhu X L, Xu F J, . Temperature- and pH-sensitive nylon membranes prepared via consecutive surface-Initiated atom transfer radical graft polymerizations. Journal of Membrane Science , 2009, 342(1-2): 300–306 doi: 10.1016/j.memsci.2009.07.004
11
Zhai G, Kang E T, Neoh K G. Poly(2-vinylpyridine)- and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) copolymers and their pH-sensitive microfiltration membranes. Journal of Membrane Science , 2003, 217(1-2): 243–259 doi: 10.1016/S0376-7388(03)00140-6
12
Hester J F, Olugebefola S C, Mayes A M. Preparation of pH-responsive polymer membranes by self-organization. Journal of Membrane Science , 2002, 208(1-2): 375–388 doi: 10.1016/S0376-7388(02)00317-4
13
Okajima S, Yamaguchi T, Sakai Y, . Regulation of cell adhesion using a signal-responsive membrane substrate. Biotechnology and Bioengineering , 2005, 91(2): 237–243 doi: 10.1002/bit.20512
14
Ito T, Yamaguchi T. Osmotic pressure control in response to a specific ion signal at physiological temperature using a molecular recognition ion gating membrane. Journal of the American Chemical Society , 2004, 126(20): 6202–6203 doi: 10.1021/ja0306213
15
Ito T, Sato Y, Yamaguchi T, . Response mechanism of a molecular recognition ion gating membrane. Macromolecules , 2004, 37(9): 3407–3414 doi: 10.1021/ma030590w
16
Dong Y Y, He X L, Chen L, . Effect of AAc-GA content on swelling behaviors of temperature-sensitive PNIPAAm-based hydrogels. Frontiers of Materials Science in China , 2010, 4(1): 84–89 doi: 10.1007/s11706-010-0002-7
17
Stile R A, Burghardt W R, Healy E. Synthesis and characterization of injectable poly(N-isopropyl acrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules , 1999, 32(22): 7370–7379 doi: 10.1021/ma990130w
18
Homberg S, Nasman J H, Sundholm F. Synthesis and properties of sulfonated and crosslinked poly[(vinylidene fluoride)-graft-styrene] membranes. Polymers for Advanced Technologies , 1998, 9(2): 121–127 doi: 10.1002/(SICI)1099-1581(199802)9:2<121::AID-PAT724>3.0.CO;2-M
19
Chen Y W, Xiao J C, Zhou W H, . Grafting poly(N-isopropyl acrylamide) from poly(vinylidene fluoride) mirofiltration membranes via direct surface-initiated atom transfer radical polymerization and temperature sensitivity. Surface Review and Letters , 2009, 16(1): 111–121 doi: 10.1142/S0218625X09012378
20
Chiang Y C, Chang Y, Higuchi A, . Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. Journal of Membrane Science , 2009, 339(1-2): 151–159 doi: 10.1016/j.memsci.2009.04.044
21
Hester J F, Banerjee P, Won Y Y, . ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules , 2002, 35(20): 7652–7661 doi: 10.1021/ma0122270
22
Inceoglu S, Olugebefola S C, Acar M H, . Atom transfer radical polymerization using poly(vinylidene fluoride) as macroinitiator. Designed Monomers and Polymers , 2004, 7(1-2): 181–189 doi: 10.1163/156855504322890133
23
Wang W Y, Chen L. “Smart” membrane materials: preparation and characterization of PVDF-g-PNIPAAm graft copolymer. Journal of Applied Polymer Science , 2007, 104(3): 1482–1486 doi: 10.1002/app.25203
24
Chen Y W, Liu D M, Deng Q L, . Atom transfer radical polymerization directly from poly(vinylidene fluoride): surface and antifouling properties. Journal of Polymer Science, Part A: Polymer Chemistry , 2006, 44(11): 3434–3443 doi: 10.1002/pola.21456
25
Kim Y W, Lee D K, Lee K J, . Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes. European Polymer Journal , 2008, 44(3): 932–939 doi: 10.1016/j.eurpolymj.2007.12.020
26
Matyjaszewski K, Xia J H. Atom transfer radical polymerization. Chemical Reviews , 2001, 101(9): 2921–2990 doi: 10.1021/cr940534g
27
Pan K, Jiang L, Zhang J, . Reverse atom transfer radical polymerization of methyl methacrylate in different solvents. Journal of Applied Polymer Science , 2007, 106(4): 2543–2547 doi: 10.1002/app.25242
28
Masci G, Giacomelli L, Crescenzi V. Atom transfer radical polymerization of N-isopropylacrylamide. Macromolecular Rapid Communications , 2004, 25(4): 559–564 doi: 10.1002/marc.200300140
29
Destarac M, Matyjaszewski K, Silverman E, . Atom transfer radical polymerization initiated with vinylidene fluoride telomers. Macromolecules , 2000, 33(13): 4613–4615 doi: 10.1021/ma9918351
30
Zhang M, Russell T P. Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules , 2006, 39(10): 3531–3539 doi: 10.1021/ma060128m
31
Singh N, Husson S M, Zdyrko B, . Surface modification of microporous PVDF membranes by ATRP. Journal of Membrane Science , 2005, 262(1-2): 81–90 doi: 10.1016/j.memsci.2005.03.053
32
Ciampolini M, Nardi N. Trigonal bipyramidal complexes of bivalent manganese, iron, and zinc with tris(2-dimethylaminoethyl)amine. Inorganic Chemistry , 1966, 5(7): 1150–1154 doi: 10.1021/ic50041a016
33
Hesampour M, Huuhilo T, Makinen K, . Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes. Journal of Membrane Science , 2008, 310(1-2): 85–92 doi: 10.1016/j.memsci.2007.10.038
34
Yu H Y, Li W, Zhou J, . Thermo- and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization. Journal of Membrane Science , 2009, 343(1-2): 82–89 doi: 10.1016/j.memsci.2009.07.012