Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science in China  2010, Vol. 4 Issue (4): 345-352   https://doi.org/10.1007/s11706-010-0106-0
  RESEARCH ARTICLE 本期目录
Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization
Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization
Xian-Kai LIN, Xia FENG, Li CHEN(), Yi-Ping ZHAO
State Key Laboratory of Hollow Fiber Membrane Materials and Processes, School of Materials Science and Engineering, Tianjin Polytechnic University, Tianjin 300160, China
 全文: PDF(410 KB)   HTML
Abstract

In this paper, poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) (PVDF-g-PNIPAAm) copolymers were synthesized directly via grafting temperature-sensitive material NIPAAm on PVDF by atom transfer radical polymerization (ATRP). The chemical structure of the graft copolymers was characterized by Fourier transform infrared (FTIR) and 1H-NMR spectroscopy. The temperature-sensitive membranes were prepared from the PVDF-g-PNIPAAm copolymers by the immersion precipitation process of the phase inversion method. The chemical composition and pore structure of the PVDF-g-PNIPAAm membranes were studied by X-ray photoelectron spectroscopy (XPS) and an automatic mercury porosimeter, respectively. The effects of temperature on pure water flux and bovine serum albumen (BSA) rejection ratio of the membranes were also investigated. The results showed that the grafted PNIPAAm chains tended to enrich on the surfaces of the membranes or the membrane pores during the membrane-forming process. Pore diameter and porosity of the copolymer membranes were larger than those of the pristine PVDF membranes. Also, the PVDF-g-PNIPAAm membranes could exhibit temperature-sensitive performance in water flux and BSA rejection measurements.

Key wordspoly(vinylidene fluoride) (PVDF)    N-isopropylacrylamide (NIPAAm)    atom transfer radical polymerization (ATRP)    temperature-sensitive membrane
收稿日期: 2010-08-10      出版日期: 2010-12-05
Corresponding Author(s): CHEN Li,Email:tjpuchenlis@163.com   
 引用本文:   
. Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization[J]. Frontiers of Materials Science in China, 2010, 4(4): 345-352.
Xian-Kai LIN, Xia FENG, Li CHEN, Yi-Ping ZHAO. Characterization of temperature-sensitive membranes prepared from poly(vinylidene fluoride)-graft-poly(N-isopropylacrylamide) copolymers obtained by atom transfer radical polymerization. Front Mater Sci Chin, 2010, 4(4): 345-352.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-010-0106-0
https://academic.hep.com.cn/foms/CN/Y2010/V4/I4/345
Fig.1  
Fig.2  
MembranesATRP reaction time /hXbulk/% a)Xsurface/% b)Average pore diameter /μmPorosity /%
PVDF0.2974.52
Copolymer 110.377.570.3375.24
Copolymer 230.918.920.3276.71
Copolymer 362.258.840.3777.93
Copolymer 4124.3212.290.5279.80
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Liang L, Feng X D, Peurrung L, . Temperature-sensitive membranes prepared by UV photopolymerization of N-isopropylacrylamide on a surface of porous hydrophilic polypropylene membranes. Journal of Membrane Science , 1999, 162(1-2): 235–246
doi: 10.1016/S0376-7388(99)00145-3
2 Alem H, Duwez A S, Lussis P, . Microstructure and thermo-responsive behavior of poly(N-isopropylacrylamide) brushes grafted in nanopores of track-etched membranes. Journal of Membrane Science , 2008, 308(1-2): 75–86
doi: 10.1016/j.memsci.2007.09.036
3 Li P F, Xie R, Jiang J C, . Thermo-responsive gating membranes with controllable length and density of poly(N-isopropylacrylamide) chains grafted by ATRP method. Journal of Membrane Science , 2009, 337(1-2): 310–317
doi: 10.1016/j.memsci.2009.04.010
4 Yang W C, Xie R, Pang X Q, . Preparation and characterization of dual stimuli-responsive microcapsules with a superparamagnetic porous membrane and thermo-responsive gates. Journal of Membrane Science , 2008, 321(2): 324–330
doi: 10.1016/j.memsci.2008.05.016
5 Li Y, Chu L Y, Zhu J H, . Thermo-responsive gating characteristics of poly(N-isopropylacrylamide)-grafted porous poly(vinylidene fluoride) membranes. Industrial & Engineering Chemistry Research , 2004, 43(11): 2643–2649
doi: 10.1021/ie034334j
6 Ying L, Kang E T, Neoh K G. Synthesis and characterization of poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) copolymers and temperature-Sensitive Membranes. Langmuir , 2002, 18(16): 6416–6423
doi: 10.1021/la020241f
7 Ying L, Kang E T, Neoh K G, . Drug permeation through temperature-sensitive membranes prepared from poly(vinylidene fluoride) with grafted poly(N-isopropylacrylamide) chains. Journal of Membrane Science , 2004, 243(1-2): 253–262
doi: 10.1016/j.memsci.2004.06.028
8 Xu F J, Li J, Yuan S J, . Thermo-responsive porous membranes of controllable porous morphology from triblock copolymers of polycaprolactone and poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Biomacromolecules , 2008, 9(1): 331–339
doi: 10.1021/bm7008922
9 Kim S Y, Kanamori T, Shinbo T. Preparation of Thermal-responsive poly(propylene) membranes grafted with N-isopropylacrylamide by plasma-induced polymerization and their water permeation. Journal of Applied Polymer Science , 2002, 84(6): 1168–1177
doi: 10.1002/app.10410
10 Zhang Z B, Zhu X L, Xu F J, . Temperature- and pH-sensitive nylon membranes prepared via consecutive surface-Initiated atom transfer radical graft polymerizations. Journal of Membrane Science , 2009, 342(1-2): 300–306
doi: 10.1016/j.memsci.2009.07.004
11 Zhai G, Kang E T, Neoh K G. Poly(2-vinylpyridine)- and poly(4-vinylpyridine)-graft-poly(vinylidene fluoride) copolymers and their pH-sensitive microfiltration membranes. Journal of Membrane Science , 2003, 217(1-2): 243–259
doi: 10.1016/S0376-7388(03)00140-6
12 Hester J F, Olugebefola S C, Mayes A M. Preparation of pH-responsive polymer membranes by self-organization. Journal of Membrane Science , 2002, 208(1-2): 375–388
doi: 10.1016/S0376-7388(02)00317-4
13 Okajima S, Yamaguchi T, Sakai Y, . Regulation of cell adhesion using a signal-responsive membrane substrate. Biotechnology and Bioengineering , 2005, 91(2): 237–243
doi: 10.1002/bit.20512
14 Ito T, Yamaguchi T. Osmotic pressure control in response to a specific ion signal at physiological temperature using a molecular recognition ion gating membrane. Journal of the American Chemical Society , 2004, 126(20): 6202–6203
doi: 10.1021/ja0306213
15 Ito T, Sato Y, Yamaguchi T, . Response mechanism of a molecular recognition ion gating membrane. Macromolecules , 2004, 37(9): 3407–3414
doi: 10.1021/ma030590w
16 Dong Y Y, He X L, Chen L, . Effect of AAc-GA content on swelling behaviors of temperature-sensitive PNIPAAm-based hydrogels. Frontiers of Materials Science in China , 2010, 4(1): 84–89
doi: 10.1007/s11706-010-0002-7
17 Stile R A, Burghardt W R, Healy E. Synthesis and characterization of injectable poly(N-isopropyl acrylamide)-based hydrogels that support tissue formation in vitro. Macromolecules , 1999, 32(22): 7370–7379
doi: 10.1021/ma990130w
18 Homberg S, Nasman J H, Sundholm F. Synthesis and properties of sulfonated and crosslinked poly[(vinylidene fluoride)-graft-styrene] membranes. Polymers for Advanced Technologies , 1998, 9(2): 121–127
doi: 10.1002/(SICI)1099-1581(199802)9:2<121::AID-PAT724>3.0.CO;2-M
19 Chen Y W, Xiao J C, Zhou W H, . Grafting poly(N-isopropyl acrylamide) from poly(vinylidene fluoride) mirofiltration membranes via direct surface-initiated atom transfer radical polymerization and temperature sensitivity. Surface Review and Letters , 2009, 16(1): 111–121
doi: 10.1142/S0218625X09012378
20 Chiang Y C, Chang Y, Higuchi A, . Sulfobetaine-grafted poly(vinylidene fluoride) ultrafiltration membranes exhibit excellent antifouling property. Journal of Membrane Science , 2009, 339(1-2): 151–159
doi: 10.1016/j.memsci.2009.04.044
21 Hester J F, Banerjee P, Won Y Y, . ATRP of amphiphilic graft copolymers based on PVDF and their use as membrane additives. Macromolecules , 2002, 35(20): 7652–7661
doi: 10.1021/ma0122270
22 Inceoglu S, Olugebefola S C, Acar M H, . Atom transfer radical polymerization using poly(vinylidene fluoride) as macroinitiator. Designed Monomers and Polymers , 2004, 7(1-2): 181–189
doi: 10.1163/156855504322890133
23 Wang W Y, Chen L. “Smart” membrane materials: preparation and characterization of PVDF-g-PNIPAAm graft copolymer. Journal of Applied Polymer Science , 2007, 104(3): 1482–1486
doi: 10.1002/app.25203
24 Chen Y W, Liu D M, Deng Q L, . Atom transfer radical polymerization directly from poly(vinylidene fluoride): surface and antifouling properties. Journal of Polymer Science, Part A: Polymer Chemistry , 2006, 44(11): 3434–3443
doi: 10.1002/pola.21456
25 Kim Y W, Lee D K, Lee K J, . Single-step synthesis of proton conducting poly(vinylidene fluoride) (PVDF) graft copolymer electrolytes. European Polymer Journal , 2008, 44(3): 932–939
doi: 10.1016/j.eurpolymj.2007.12.020
26 Matyjaszewski K, Xia J H. Atom transfer radical polymerization. Chemical Reviews , 2001, 101(9): 2921–2990
doi: 10.1021/cr940534g
27 Pan K, Jiang L, Zhang J, . Reverse atom transfer radical polymerization of methyl methacrylate in different solvents. Journal of Applied Polymer Science , 2007, 106(4): 2543–2547
doi: 10.1002/app.25242
28 Masci G, Giacomelli L, Crescenzi V. Atom transfer radical polymerization of N-isopropylacrylamide. Macromolecular Rapid Communications , 2004, 25(4): 559–564
doi: 10.1002/marc.200300140
29 Destarac M, Matyjaszewski K, Silverman E, . Atom transfer radical polymerization initiated with vinylidene fluoride telomers. Macromolecules , 2000, 33(13): 4613–4615
doi: 10.1021/ma9918351
30 Zhang M, Russell T P. Graft copolymers from poly(vinylidene fluoride-co-chlorotrifluoroethylene) via atom transfer radical polymerization. Macromolecules , 2006, 39(10): 3531–3539
doi: 10.1021/ma060128m
31 Singh N, Husson S M, Zdyrko B, . Surface modification of microporous PVDF membranes by ATRP. Journal of Membrane Science , 2005, 262(1-2): 81–90
doi: 10.1016/j.memsci.2005.03.053
32 Ciampolini M, Nardi N. Trigonal bipyramidal complexes of bivalent manganese, iron, and zinc with tris(2-dimethylaminoethyl)amine. Inorganic Chemistry , 1966, 5(7): 1150–1154
doi: 10.1021/ic50041a016
33 Hesampour M, Huuhilo T, Makinen K, . Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes. Journal of Membrane Science , 2008, 310(1-2): 85–92
doi: 10.1016/j.memsci.2007.10.038
34 Yu H Y, Li W, Zhou J, . Thermo- and pH-responsive polypropylene microporous membrane prepared by the photoinduced RAFT-mediated graft copolymerization. Journal of Membrane Science , 2009, 343(1-2): 82–89
doi: 10.1016/j.memsci.2009.07.012
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed