Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science in China  2010, Vol. 4 Issue (4): 394-397   https://doi.org/10.1007/s11706-010-0110-4
  RESEARCH ARTICLE 本期目录
Behaviors of different dispersers on morphologies of porous TiO2 films
Behaviors of different dispersers on morphologies of porous TiO2 films
Ding REN, Yu ZOU, Chang-Yong ZHAN, Ning-Kang HUANG()
Key Laboratory of Radiation Physics and Technology (Ministry of Education), Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
 全文: PDF(295 KB)   HTML
Abstract

TiO2 films with nanoparticles dispersed by using three different additives such as acetylacetone, Emulsifier OP-10, and polyethylene glycol, respectively. It is found that for the TiO2 films produced with appropriate amount of Emulsifier OP-10, there are no reaggregation of TiO2 nanoparticles with pores of about 5–20 nm. By adding polyethylene glycol, the pore size of the TiO2 films could be in the range from about 50 to 200 nm. However, by using acetylacetone, aggregations of TiO2 nanoparticles always exist in the TiO2 films. The related mechanism on the aggregation of nanoparticles in the TiO2 slurries is discussed.

Key wordsdye-sensitized solar cell (DSSC)    porous TiO2 films    disperser    morphology
收稿日期: 2010-09-29      出版日期: 2010-12-05
Corresponding Author(s): HUANG Ning-Kang,Email:huang_072@163.com   
 引用本文:   
. Behaviors of different dispersers on morphologies of porous TiO2 films[J]. Frontiers of Materials Science in China, 2010, 4(4): 394-397.
Ding REN, Yu ZOU, Chang-Yong ZHAN, Ning-Kang HUANG. Behaviors of different dispersers on morphologies of porous TiO2 films. Front Mater Sci Chin, 2010, 4(4): 394-397.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-010-0110-4
https://academic.hep.com.cn/foms/CN/Y2010/V4/I4/394
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 O’Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature , 1991, 353(6346): 737–740
doi: 10.1038/353737a0
2 Dai S-Y, Wang K-J. Optimum nanoporous TiO2 film and its application to dye-sensitized solar cells. Chinese Physics Letters , 2003, 20(6): 953–955
doi: 10.1088/0256-307X/20/6/351
3 Paek S M, Jung H, Lee Y J, . Nanostructured TiO2 films for dye-sensitized solar cells. Journal of Physics and Chemistry of Solids , 2006, 67(5-6): 1308–1311
doi: 10.1016/j.jpcs.2006.01.063
4 Saito Y, Kambe S, Kitamura T, . Morphology control of mesoporous TiO2 nanocrystalline films for performance of dye-sensitized solar cells. Solar Energy Materials and Solar Cells , 2004, 83(1): 1–13
doi: 10.1016/j.solmat.2004.02.010
5 van de Lagemaat J, Benkstein K D, Frank A J. Relation between particle coordination number and porosity in nanoparticle films: implications to dye-sensitized solar cells. Journal of Physical Chemistry B , 2001, 105(50): 12433–12436
doi: 10.1021/jp013369z
6 Zumeta I, Espinosa R, Ayllon J A, . Comparative study of nanocrystalline TiO2 photoelectrodes based on characteristics of nanopowder used. Solar Energy Materials and Solar Cells , 2003, 76(1): 15–24
doi: 10.1016/S0927-0248(02)00247-7
7 Lan X-H, Yang S-Q, Zou Y, . Effects of different dispersion methods on the microscopical morphology of TiO2 film. Chinese Physics Letters , 2007, 24(12): 3567–3569
doi: 10.1088/0256-307X/24/12/075
8 Wongcharee K, Meeyoo V, Chavadej S. Dye-sensitized solar cell using natural dyes extracted from rosella and blue pea flowers. Solar Energy Materials and Solar Cells , 2007, 91(7): 566–571
doi: 10.1016/j.solmat.2006.11.005
9 Li M, Xiao Z D, Huan Z Y, . New binding state useful for attachment of dye-molecules onto TiO2 surface. Applied Surface Science , 1998, 125(2): 217–220
doi: 10.1016/S0169-4332(97)00405-4
10 Menzies D B, Dai Q, Cheng Y B, . 15th International Conference on Photochemical Conversion and Storage of Solar Energy. Paris, 2004, 713
11 Wessels K, Maekawa M, Rathousky J, . Highly porous TiO2 films from anodically deposited titanate hybrids and their photoelectrochemical and photocatalytic activity. Microporous and Mesoporous Materials , 2008, 111(1-3): 55–61
doi: 10.1016/j.micromeso.2007.07.004
12 Chou C-S, Yang R-Y, Weng M-H, . Study of the applicability of TiO2/dye composite particles for a dye-sensitized solar cell. Advanced Powder Technology , 2008, 19(6): 541–558
doi: 10.1163/156855208X368616
13 Nazeeruddin M K, Péchy P, Renouard T, . Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society , 2001, 123(8): 1613–1624
doi: 10.1021/ja003299u
14 Capan R, Chaure N B, Hassan A K, . Optical dispersion in spun nanocrystalline titania thin films. Semiconductor Science and Technology , 2004, 19(2): 198–202
doi: 10.1088/0268-1242/19/2/012
15 Tatsu S, Richard R. Stabilization of Colloidal Dispersions by Polymer Adsorption. New York: Marcel Dekker Press, 1998, 9: 23
16 Porter J F, Li Y G, Chan C K. The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. Journal of Materials Science , 1999, 34(7): 1523–1531
doi: 10.1023/A:1004560129347
17 Alexeev V L. The instability of silica sol in concentrated solutions of Triton X100. Journal of Colloid and Interface Science , 1998, 206(2): 416–423
doi: 10.1006/jcis.1998.5709
18 Liufu S-C, Xiao H-N, Li Y-P, . Polyethylene glycol adsorption behavior on nanoparticulate TiO2 and its stability in aqueous dispersions. Journal of Inorganic Materials , 2005, 20(2): 310–316 (in Chinese)
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed