Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2011, Vol. 5 Issue (1): 25-39   https://doi.org/10.1007/s11706-011-0120-x
  REVIEW ARTICLE 本期目录
Catalytic nanomotors: fabrication, mechanism, and applications
Catalytic nanomotors: fabrication, mechanism, and applications
John GIBBS(), Yiping ZHAO
Nanoscale Science and Engineering Center, Department of Physics and Astronomy, The University of Georgia, Athens, GA 30602, USA
 全文: PDF(930 KB)   HTML
Abstract

Catalytic nanomotors are nano-to-micrometer-sized actuators that carry an on-board catalyst and convert local chemical fuel in solution into mechanical work. The location of this catalyst as well as the geometry of the structure dictate the swimming behaviors exhibited. The nanomotors can occur naturally in organic molecules, combine natural and artificial parts to form hybrid nanomotors or be purely artificial. Fabrication techniques consist of template directed electroplating, lithography, physical vapor deposition, and other advanced growth methods. Various physical and chemical propulsion mechanisms have been proposed to explain the motion behaviors including diffusiophoresis, bubble propulsion, interfacial tension gradients, and self-electropho-resis. The control and manipulation based upon external fields, catalytic alloys, and motion control through thermal modulation are discussed as well. Catalytic nanomotors represent an exciting technological challenge with the end goal being practical functional nanomachines that can perform a variety of tasks at the nanoscale.

Key wordsnanomotors    catalysis    glancing angle deposition (GLAD)    bubble propulsion    self-electrophoresis
收稿日期: 2011-01-03      出版日期: 2011-03-05
Corresponding Author(s): GIBBS John,Email:jggibbs@physast.uga.edu   
 引用本文:   
. Catalytic nanomotors: fabrication, mechanism, and applications[J]. Frontiers of Materials Science, 2011, 5(1): 25-39.
John GIBBS, Yiping ZHAO. Catalytic nanomotors: fabrication, mechanism, and applications. Front Mater Sci, 2011, 5(1): 25-39.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-011-0120-x
https://academic.hep.com.cn/foms/CN/Y2011/V5/I1/25
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
1 Ozin G A, Manners I, Fournier-Bidoz S, . Dream nanomachines. Advanced Materials , 2005, 17(24): 3011–3018
doi: 10.1002/adma.200501767
2 Mirkovic T, Zacharia N S, Scholes G D, . Nanolocomotion- catalytic nanomotors and nanorotors. Small , 2010, 6(2): 159–167
doi: 10.1002/smll.200901340
3 Mirkovic T, Zacharia N S, Scholes G D, . Fuel for thought: chemically powered nanomotors out-swim nature’s flagellated bacteria. ACS Nano , 2010, 4(4): 1782–1789
doi: 10.1021/nn100669h
4 Paxton W F, Sen A, Mallouk T E. Motility of catalytic nanoparticles through self-generated forces. Chemistry- a European Journal , 2005, 11(22): 6462–6470
5 Paxton W F, Sundararajan S, Mallouk T E, . Chemical locomotion. Angewandte Chemie , 2006, 45(33): 5420–5429
doi: 10.1002/anie.200600060
6 Wang J. Can man-made nanomachines compete with nature biomotors? ACS Nano , 2009, 3(1): 4–9
doi: 10.1021/nn800829k
7 Wang J, Manesh K M. Motion control at the nanoscale. Small , 2010, 6(3): 338–345
doi: 10.1002/smll.200901746
8 Schliwa M, Woehlke G. Molecular motors. Nature , 2003, 422(6933): 759–765
doi: 10.1038/nature01601
9 Gajewski E, Steckler D K, Goldberg R N. Thermodynamics of the hydrolysis of adenosine 5′-triphosphate to adenosine 5′-diphosphate. The Journal of Biological Chemistry , 1986, 261(27): 12733–12737
10 Alberts B, Johnson A, Lewis J, . Molecular Biology of the Cell. 4th ed. New York: Garland Science, 2002
11 Kron S J, Spudich J A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proceedings of the National Academy of Sciences of the United States of America , 1986, 83(17): 6272–6276
doi: 10.1073/pnas.83.17.6272
12 Browne W R, Feringa B L. Making molecular machines work. Nature Nanotechnology , 2006, 1(1): 25–35
doi: 10.1038/nnano.2006.45
13 Kay E R, Leigh D A, Zerbetto F. Synthetic molecular motors and mechanical machines. Angewandte Chemie , 2007, 46(1-2): 72–191
doi: 10.1002/ange.200504313
14 Kinbara K, Aida T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chemical Reviews , 2005, 105(4): 1377–1400
doi: 10.1021/cr030071r
15 Cameron L A, Footer M J, van Oudenaarden A, . Motility of ActA protein-coated microspheres driven by actin polymerization. Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(9): 4908–4913
doi: 10.1073/pnas.96.9.4908
16 Soong R K, Bachand G D, Neves H P, . Powering an inorganic nanodevice with a biomolecular motor. Science , 2000, 290(5496): 1555–1558
doi: 10.1126/science.290.5496.1555
17 Mano N, Heller A. Bioelectrochemical propulsion. Journal of the American Chemical Society , 2005, 127(33): 11574–11575
doi: 10.1021/ja053937e
18 Sanchez S, Solovev A A, Mei Y, . Dynamics of biocatalytic microengines mediated by variable friction control. Journal of the American Chemical Society , 2010, 132(38): 13144–13145
doi: 10.1021/ja104362r
19 Pantarotto D, Browne W R, Feringa B L. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chemical Communications , 2008, (13): 1533–1535
doi: 10.1039/b715310d
20 Ebbens S J, Howse J R. In pursuit of propulsion at the nanoscale. Soft Matter , 2010, 6(4): 726–738
doi: 10.1039/b918598d
21 Nicewarner-Pena S R, Freeman R G, Reiss B D, . Submicrometer metallic barcodes. Science , 2001, 294(5540): 137–141
doi: 10.1126/science.294.5540.137
22 Paxton W F, Kistler K C, Olmeda C C, . Catalytic nanomotors: autonomous movement of striped nanorods. Journal of the American Chemical Society , 2004, 126(41): 13424–13431
doi: 10.1021/ja047697z
23 Laocharoensuk R, Burdick J, Wang J. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano , 2008, 2(5): 1069–1075
doi: 10.1021/nn800154g
24 Qin L D, Banholzer M J, Xu X, . Rational design and synthesis of catalytically driven nanorotors. Journal of the American Chemical Society , 2007, 129(48): 14870–14871
doi: 10.1021/ja0772391
25 Manesh K M, Cardona M, Yuan R, . Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano , 2010, 4(4): 1799–1804
doi: 10.1021/nn1000468
26 Catchmark J M, Subramanian S, Sen A. Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small , 2005, 1(2): 202–206
doi: 10.1002/smll.200400061
27 Kline T R, Paxton W F, Mallouk T E, . Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angewandte Chemie , 2005, 44(5): 744–746
doi: 10.1002/anie.200461890
28 Love J C, Gates B D, Wolfe D B, . Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Letters , 2002, 2(8): 891–894
doi: 10.1021/nl025633l
29 Golestanian R, Liverpool T B, Ajdari A. Designing phoretic micro- and nano-swimmers. New Journal of Physics , 2007, 9: 126 (9 pages)
30 Howse J R, Jones R A, Ryan A J, . Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters , 2007, 99(4): 048102 (4 pages)
31 Gibbs J G, Zhao Y P. Autonomously motile catalytic nanomotors by bubble propulsion. Applied Physics Letters , 2009, 94(16): 163104 (3 pages)
32 Wheat P M, Marine N A, Moran J L, . Rapid fabrication of bimetallic spherical motors. Langmuir , 2010, 26(16): 13052–13055
doi: 10.1021/la102218w
33 Gibbs J G, Fragnito N A, Zhao Y P. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth. Applied Physics Letters , 2010, 97: 253107 (3 pages)
34 Wang Y, Fei S T, Byun Y M, . Dynamic interactions between fast microscale rotors. Journal of the American Chemical Society , 2009, 131(29): 9926–9927
doi: 10.1021/ja904827j
35 Solovev A A, Mei Y, Bermúdez Ure?a E, . Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small , 2009, 5(14): 1688–1692
doi: 10.1002/smll.200900021
36 Robbie K, Brett M J. Sculptured thin films and glancing angle deposition: Growth mechanics and applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , 1997, 15(3): 1460–1465
doi: 10.1116/1.580562
37 Robbie K, Brett M J, Lakhtakia A. Chiral sculptured thin films. Nature , 1996, 384(6610): 616
doi: 10.1038/384616a0
38 Zhao Y P, Ye D X, Wang P I, . Fabrication of Si nanocolumns and Si square spirals on self-assembled monolayer colloid substrates. International Journal of Nanoscience , 2002, 1(1): 87–97
doi: 10.1142/S0219581X02000073
39 Zhao Y P, Ye D X, Wang G C, . Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Letters , 2002, 2(4): 351–354
doi: 10.1021/nl0157041
40 He Y P, Wu J S, Zhao Y P. Designing catalytic nanomotors by dynamic shadowing growth. Nano Letters , 2007, 7(5): 1369–1375
doi: 10.1021/nl070461j
41 Gibbs J G, Zhao Y P. Design and characterization of rotational multicomponent catalytic nanomotors. Small , 2009, 5(20): 2304–2308
doi: 10.1002/smll.200900686
42 Ismagilov R F, Schwartz A, Bowden N, . Autonomous movement and self-assembly. Angewandte Chemie , 2002, 114(4): 674–676
doi: 10.1002/1521-3757(20020215)114:4<674::AID-ANGE674>3.0.CO;2-Z
43 Mirkovic T, Foo M L, Arsenault A C, . Hinged nanorods made using a chemical approach to flexible nanostructures. Nature Nanotechnology , 2007, 2(9): 565–569
doi: 10.1038/nnano.2007.250
44 Sundararajan S, Lammert P E, Zudans A W, . Catalytic motors for transport of colloidal cargo. Nano Letters , 2008, 8(5): 1271–1276
doi: 10.1021/nl072275j
45 Valadares L F, Tao Y G, Zacharia N S, . Catalytic nanomotors: self-propelled sphere dimers. Small , 2010, 6(4): 565–572
doi: 10.1002/smll.200901976
46 Ebbens S, Jones R A L, Ryan A J, . Self-assembled autonomous runners and tumblers. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2010, 82(2): 015304 (4 pages)
47 Gibbs J G, Zhao Y P. Self-organized multiconstituent catalytic nanomotors. Small , 2010, 6(15): 1656–1662
doi: 10.1002/smll.201000415
48 Wang Y, Hernandez R M, Bartlett D J Jr, . Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir , 2006, 22(25): 10451–10456
doi: 10.1021/la0615950
49 Golestanian R, Liverpool T B, Ajdari A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Physical Review Letters , 2005, 94(22): 220801 (4 pages)
50 Moran J L, Wheat P M, Posner J D. Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2010, 81(6): 065302 (4 pages)
51 Kline T R, Paxton W F, Wang Y, . Catalytic micropumps: microscopic convective fluid flow and pattern formation. Journal of the American Chemical Society , 2005, 127(49): 17150–17151
doi: 10.1021/ja056069u
52 Burdick J, Laocharoensuk R, Wheat P M, . Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. Journal of the American Chemical Society , 2008, 130(26): 8164–8165
doi: 10.1021/ja803529u
53 Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters , 2009, 9(6): 2243–2245
doi: 10.1021/nl900186w
54 Gao W, Sattayasamitsathit S, Manesh K M, . Magnetically powered flexible metal nanowire motors. Journal of the American Chemical Society , 2010, 132(41): 14403–14405
doi: 10.1021/ja1072349
55 Balasubramanian S, Kagan D, Manesh K M, . Thermal modulation of nanomotor movement. Small , 2009, 5(13): 1569–1574
doi: 10.1002/smll.200900023
56 Demirok U K, Laocharoensuk R, Manesh K M, . Ultrafast catalytic alloy nanomotors. Angewandte Chemie , 2008, 120(48): 9489–9491
doi: 10.1002/ange.200803841
57 Wu J, Balasubramanian S, Kagan D, . Motion-based DNA detection using catalytic nanomotors. Nature Communications , 2010, 1: 36
doi: 10.1038/ncomms1035
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed