Catalytic nanomotors are nano-to-micrometer-sized actuators that carry an on-board catalyst and convert local chemical fuel in solution into mechanical work. The location of this catalyst as well as the geometry of the structure dictate the swimming behaviors exhibited. The nanomotors can occur naturally in organic molecules, combine natural and artificial parts to form hybrid nanomotors or be purely artificial. Fabrication techniques consist of template directed electroplating, lithography, physical vapor deposition, and other advanced growth methods. Various physical and chemical propulsion mechanisms have been proposed to explain the motion behaviors including diffusiophoresis, bubble propulsion, interfacial tension gradients, and self-electropho-resis. The control and manipulation based upon external fields, catalytic alloys, and motion control through thermal modulation are discussed as well. Catalytic nanomotors represent an exciting technological challenge with the end goal being practical functional nanomachines that can perform a variety of tasks at the nanoscale.
. Catalytic nanomotors: fabrication, mechanism, and applications[J]. Frontiers of Materials Science, 2011, 5(1): 25-39.
John GIBBS, Yiping ZHAO. Catalytic nanomotors: fabrication, mechanism, and applications. Front Mater Sci, 2011, 5(1): 25-39.
Ozin G A, Manners I, Fournier-Bidoz S, . Dream nanomachines. Advanced Materials , 2005, 17(24): 3011–3018 doi: 10.1002/adma.200501767
2
Mirkovic T, Zacharia N S, Scholes G D, . Nanolocomotion- catalytic nanomotors and nanorotors. Small , 2010, 6(2): 159–167 doi: 10.1002/smll.200901340
3
Mirkovic T, Zacharia N S, Scholes G D, . Fuel for thought: chemically powered nanomotors out-swim nature’s flagellated bacteria. ACS Nano , 2010, 4(4): 1782–1789 doi: 10.1021/nn100669h
4
Paxton W F, Sen A, Mallouk T E. Motility of catalytic nanoparticles through self-generated forces. Chemistry- a European Journal , 2005, 11(22): 6462–6470
5
Paxton W F, Sundararajan S, Mallouk T E, . Chemical locomotion. Angewandte Chemie , 2006, 45(33): 5420–5429 doi: 10.1002/anie.200600060
6
Wang J. Can man-made nanomachines compete with nature biomotors? ACS Nano , 2009, 3(1): 4–9 doi: 10.1021/nn800829k
7
Wang J, Manesh K M. Motion control at the nanoscale. Small , 2010, 6(3): 338–345 doi: 10.1002/smll.200901746
8
Schliwa M, Woehlke G. Molecular motors. Nature , 2003, 422(6933): 759–765 doi: 10.1038/nature01601
9
Gajewski E, Steckler D K, Goldberg R N. Thermodynamics of the hydrolysis of adenosine 5′-triphosphate to adenosine 5′-diphosphate. The Journal of Biological Chemistry , 1986, 261(27): 12733–12737
10
Alberts B, Johnson A, Lewis J, . Molecular Biology of the Cell. 4th ed. New York: Garland Science, 2002
11
Kron S J, Spudich J A. Fluorescent actin filaments move on myosin fixed to a glass surface. Proceedings of the National Academy of Sciences of the United States of America , 1986, 83(17): 6272–6276 doi: 10.1073/pnas.83.17.6272
12
Browne W R, Feringa B L. Making molecular machines work. Nature Nanotechnology , 2006, 1(1): 25–35 doi: 10.1038/nnano.2006.45
13
Kay E R, Leigh D A, Zerbetto F. Synthetic molecular motors and mechanical machines. Angewandte Chemie , 2007, 46(1-2): 72–191 doi: 10.1002/ange.200504313
14
Kinbara K, Aida T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chemical Reviews , 2005, 105(4): 1377–1400 doi: 10.1021/cr030071r
15
Cameron L A, Footer M J, van Oudenaarden A, . Motility of ActA protein-coated microspheres driven by actin polymerization. Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(9): 4908–4913 doi: 10.1073/pnas.96.9.4908
16
Soong R K, Bachand G D, Neves H P, . Powering an inorganic nanodevice with a biomolecular motor. Science , 2000, 290(5496): 1555–1558 doi: 10.1126/science.290.5496.1555
17
Mano N, Heller A. Bioelectrochemical propulsion. Journal of the American Chemical Society , 2005, 127(33): 11574–11575 doi: 10.1021/ja053937e
18
Sanchez S, Solovev A A, Mei Y, . Dynamics of biocatalytic microengines mediated by variable friction control. Journal of the American Chemical Society , 2010, 132(38): 13144–13145 doi: 10.1021/ja104362r
19
Pantarotto D, Browne W R, Feringa B L. Autonomous propulsion of carbon nanotubes powered by a multienzyme ensemble. Chemical Communications , 2008, (13): 1533–1535 doi: 10.1039/b715310d
20
Ebbens S J, Howse J R. In pursuit of propulsion at the nanoscale. Soft Matter , 2010, 6(4): 726–738 doi: 10.1039/b918598d
21
Nicewarner-Pena S R, Freeman R G, Reiss B D, . Submicrometer metallic barcodes. Science , 2001, 294(5540): 137–141 doi: 10.1126/science.294.5540.137
22
Paxton W F, Kistler K C, Olmeda C C, . Catalytic nanomotors: autonomous movement of striped nanorods. Journal of the American Chemical Society , 2004, 126(41): 13424–13431 doi: 10.1021/ja047697z
23
Laocharoensuk R, Burdick J, Wang J. Carbon-nanotube-induced acceleration of catalytic nanomotors. ACS Nano , 2008, 2(5): 1069–1075 doi: 10.1021/nn800154g
24
Qin L D, Banholzer M J, Xu X, . Rational design and synthesis of catalytically driven nanorotors. Journal of the American Chemical Society , 2007, 129(48): 14870–14871 doi: 10.1021/ja0772391
25
Manesh K M, Cardona M, Yuan R, . Template-assisted fabrication of salt-independent catalytic tubular microengines. ACS Nano , 2010, 4(4): 1799–1804 doi: 10.1021/nn1000468
26
Catchmark J M, Subramanian S, Sen A. Directed rotational motion of microscale objects using interfacial tension gradients continually generated via catalytic reactions. Small , 2005, 1(2): 202–206 doi: 10.1002/smll.200400061
27
Kline T R, Paxton W F, Mallouk T E, . Catalytic nanomotors: remote-controlled autonomous movement of striped metallic nanorods. Angewandte Chemie , 2005, 44(5): 744–746 doi: 10.1002/anie.200461890
28
Love J C, Gates B D, Wolfe D B, . Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Letters , 2002, 2(8): 891–894 doi: 10.1021/nl025633l
29
Golestanian R, Liverpool T B, Ajdari A. Designing phoretic micro- and nano-swimmers. New Journal of Physics , 2007, 9: 126 (9 pages)
30
Howse J R, Jones R A, Ryan A J, . Self-motile colloidal particles: from directed propulsion to random walk. Physical Review Letters , 2007, 99(4): 048102 (4 pages)
31
Gibbs J G, Zhao Y P. Autonomously motile catalytic nanomotors by bubble propulsion. Applied Physics Letters , 2009, 94(16): 163104 (3 pages)
32
Wheat P M, Marine N A, Moran J L, . Rapid fabrication of bimetallic spherical motors. Langmuir , 2010, 26(16): 13052–13055 doi: 10.1021/la102218w
33
Gibbs J G, Fragnito N A, Zhao Y P. Asymmetric Pt/Au coated catalytic micromotors fabricated by dynamic shadowing growth. Applied Physics Letters , 2010, 97: 253107 (3 pages)
34
Wang Y, Fei S T, Byun Y M, . Dynamic interactions between fast microscale rotors. Journal of the American Chemical Society , 2009, 131(29): 9926–9927 doi: 10.1021/ja904827j
35
Solovev A A, Mei Y, Bermúdez Ure?a E, . Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small , 2009, 5(14): 1688–1692 doi: 10.1002/smll.200900021
36
Robbie K, Brett M J. Sculptured thin films and glancing angle deposition: Growth mechanics and applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films , 1997, 15(3): 1460–1465 doi: 10.1116/1.580562
37
Robbie K, Brett M J, Lakhtakia A. Chiral sculptured thin films. Nature , 1996, 384(6610): 616 doi: 10.1038/384616a0
38
Zhao Y P, Ye D X, Wang P I, . Fabrication of Si nanocolumns and Si square spirals on self-assembled monolayer colloid substrates. International Journal of Nanoscience , 2002, 1(1): 87–97 doi: 10.1142/S0219581X02000073
39
Zhao Y P, Ye D X, Wang G C, . Novel nano-column and nano-flower arrays by glancing angle deposition. Nano Letters , 2002, 2(4): 351–354 doi: 10.1021/nl0157041
40
He Y P, Wu J S, Zhao Y P. Designing catalytic nanomotors by dynamic shadowing growth. Nano Letters , 2007, 7(5): 1369–1375 doi: 10.1021/nl070461j
41
Gibbs J G, Zhao Y P. Design and characterization of rotational multicomponent catalytic nanomotors. Small , 2009, 5(20): 2304–2308 doi: 10.1002/smll.200900686
Mirkovic T, Foo M L, Arsenault A C, . Hinged nanorods made using a chemical approach to flexible nanostructures. Nature Nanotechnology , 2007, 2(9): 565–569 doi: 10.1038/nnano.2007.250
44
Sundararajan S, Lammert P E, Zudans A W, . Catalytic motors for transport of colloidal cargo. Nano Letters , 2008, 8(5): 1271–1276 doi: 10.1021/nl072275j
45
Valadares L F, Tao Y G, Zacharia N S, . Catalytic nanomotors: self-propelled sphere dimers. Small , 2010, 6(4): 565–572 doi: 10.1002/smll.200901976
46
Ebbens S, Jones R A L, Ryan A J, . Self-assembled autonomous runners and tumblers. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2010, 82(2): 015304 (4 pages)
47
Gibbs J G, Zhao Y P. Self-organized multiconstituent catalytic nanomotors. Small , 2010, 6(15): 1656–1662 doi: 10.1002/smll.201000415
48
Wang Y, Hernandez R M, Bartlett D J Jr, . Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions. Langmuir , 2006, 22(25): 10451–10456 doi: 10.1021/la0615950
49
Golestanian R, Liverpool T B, Ajdari A. Propulsion of a molecular machine by asymmetric distribution of reaction products. Physical Review Letters , 2005, 94(22): 220801 (4 pages)
50
Moran J L, Wheat P M, Posner J D. Locomotion of electrocatalytic nanomotors due to reaction induced charge autoelectrophoresis. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics , 2010, 81(6): 065302 (4 pages)
51
Kline T R, Paxton W F, Wang Y, . Catalytic micropumps: microscopic convective fluid flow and pattern formation. Journal of the American Chemical Society , 2005, 127(49): 17150–17151 doi: 10.1021/ja056069u
52
Burdick J, Laocharoensuk R, Wheat P M, . Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. Journal of the American Chemical Society , 2008, 130(26): 8164–8165 doi: 10.1021/ja803529u
53
Ghosh A, Fischer P. Controlled propulsion of artificial magnetic nanostructured propellers. Nano Letters , 2009, 9(6): 2243–2245 doi: 10.1021/nl900186w
54
Gao W, Sattayasamitsathit S, Manesh K M, . Magnetically powered flexible metal nanowire motors. Journal of the American Chemical Society , 2010, 132(41): 14403–14405 doi: 10.1021/ja1072349
55
Balasubramanian S, Kagan D, Manesh K M, . Thermal modulation of nanomotor movement. Small , 2009, 5(13): 1569–1574 doi: 10.1002/smll.200900023
56
Demirok U K, Laocharoensuk R, Manesh K M, . Ultrafast catalytic alloy nanomotors. Angewandte Chemie , 2008, 120(48): 9489–9491 doi: 10.1002/ange.200803841