Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2011, Vol. 5 Issue (2): 179-195   https://doi.org/10.1007/s11706-011-0127-3
  RESEARCH ARTICLE 本期目录
Node dynamic relaxation method: principle and application
Node dynamic relaxation method: principle and application
Hong-Yuan FANG(), Tao WANG, Jun-Feng HU, Jian-Guo YANG
State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001, China
 全文: PDF(1154 KB)   HTML
Abstract

Two main methods, inactive element method and quiet element method, to simulate the process of multilayer and multipass welding were reviewed, and the shortcomings of both methods were discussed as well. Based on these analyses, a method called node dynamic relaxation method was put into forward to simulate the multilayer and multipass welding process, and the principle and application of this method were discussed in detail. The simulating results show that using the node dynamic relaxation method can decrease mesh distortion, improve calculation efficiency, and obtain good simulation results. This method can also be used in the field of simulation addition or removing materials in finite element analysis.

Key wordsinactive element method    quiet element method    node dynamic relaxation method    multilayer and multipass welding    finite element analysis (FEA)
收稿日期: 2010-11-15      出版日期: 2011-06-05
Corresponding Author(s): FANG Hong-Yuan,Email:hyfang@hit.edu.cn   
 引用本文:   
. Node dynamic relaxation method: principle and application[J]. Frontiers of Materials Science, 2011, 5(2): 179-195.
Hong-Yuan FANG, Tao WANG, Jun-Feng HU, Jian-Guo YANG. Node dynamic relaxation method: principle and application. Front Mater Sci, 2011, 5(2): 179-195.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-011-0127-3
https://academic.hep.com.cn/foms/CN/Y2011/V5/I2/179
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
Fig.14  
Fig.15  
Fig.16  
Fig.17  
Fig.18  
Fig.19  
Fig.20  
Fig.21  
Fig.22  
Fig.23  
Fig.24  
Fig.25  
Fig.26  
Fig.27  
Fig.28  
Computing methodComputing time /s
Increment step time: 1Increment step time: 0.25
Deactive element534220639
Quiet elementNo convergent38653
Node dynamic relaxation438517462
Tab.1  
1 Deng D, Murakawa H, Liang W. Numerical simulation of welding distortion in large structures. Computer Methods in Applied Mechanics and Engineering , 2007, 196(45-48): 4613-4627
doi: 10.1016/j.cma.2007.05.023
2 Deng D, Murakawa H, Liang W. Prediction of welding distortion in a curved plate structure by means of elastic finite element method. Journal of Materials Processing Technology , 2008, 203(1-3): 252-266
doi: 10.1016/j.jmatprotec.2007.10.009
3 Deng D, Murakawa H, Liang W. Numerical and experimental investigations on welding residual stress in multi-pass butt-welded austenitic stainless steel pipe. Computational Materials Science , 2008, 42(2): 234-244
doi: 10.1016/j.commatsci.2007.07.009
4 Sarkani S, Tritchkov V, Michaelov G. An efficient approach for computing residual stresses in welded joints. Finite Elements in Analysis and Design , 2000, 35(3): 247-268
doi: 10.1016/S0168-874X(99)00068-2
5 Lindgren L-E, Runnemalm H, N?sstr?m M O. Simulation of multipass welding of a thick plate. International Journal for Numerical Methods in Engineering , 1999, 44(9): 1301-1316
doi: 10.1002/(SICI)1097-0207(19990330)44:9<1301::AID-NME479>3.0.CO;2-K
6 Rybicki E F, Schmueser D W, Stonesifer R B, . A finite-element model for residual stresses and deflections in girth-butt welded pipes. Journal of Pressure Vessel Technology , 1978, 100(3): 256-262
doi: 10.1115/1.3454464
7 Rybicki E F, Stonesifer R B. Computation of residual stresses due to multipass welds in piping systems. Journal of Pressure Vessel Technology , 1979, 101(2): 149-154
doi: 10.1115/1.3454614
8 Rybicki E F, Stonesifer R B. An analysis procedure for predicting weld repair residual stresses in thick-walled vessels. Journal of Pressure Vessel Technology , 1980, 102(3): 323-331
doi: 10.1115/1.3263339
9 Troive L, Jonsson M. Numerical and experimental study of residual deformations due to a double-J multi-pass butt-welding of a pipe-flange joint. In: Proceedings of the 1994 Annual International Conference on Industry, Engineering, and Management Systems, Cocoa Beach, Florida, USA , 1994, 107-114
10 Brickstad B, Josefson B L. A parametric study of residual stresses in multi-pass butt-welded stainless steel pipes. International Journal of Pressure Vessels and Piping , 1998, 75(1): 11-25
doi: 10.1016/S0308-0161(97)00117-8
11 Ken Lauderbaugh Saunders L. A finite element model of exit burrs for drilling of metals. Finite Elements in Analysis and Design , 2003, 40(2): 139-158
doi: 10.1016/S0168-874X(02)00194-4
12 Teng T L. Analysis of residual stresses and distortions in T-joint fillet welds. International Journal of Pressure Vessels and Piping , 2001, 78(8): 523-538
doi: 10.1016/S0308-0161(01)00074-6
13 Ko D C. Finite-element simulation of the shear process using the element-kill method. Journal of Materials Processing Technology , 1997, 72(1): 129-140
doi: 10.1016/S0924-0136(97)00144-1
14 Gao J, Yang J, Fang H, . A method to simulate multilayer welding process: Node dynamic relaxation method. China Welding , 2009, 18(3): 42-45
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed