Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2011, Vol. 5 Issue (2): 98-108   https://doi.org/10.1007/s11706-011-0134-4
  RESEARCH ARTICLE 本期目录
Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX
Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX
M. SCHNICK1(), U. FUESSEL1, M. HERTEL1, A. SPILLE-KOHOFF2, A. B. MURPHY3
1. Institute of Surface and Manufacturing Technology, Technische Universitat Dresden, Dresden, Germany; 2. CFX Berlin Software GmBH, Berlin, Germany; 3. CSIRO Materials Science and Engineering, Lindfield NSW 2070, Australia
 全文: PDF(754 KB)   HTML
Abstract

Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.

Key wordsarc welding    numerical simulation    GMAW    ANSYS CFX
收稿日期: 2010-11-20      出版日期: 2011-06-05
Corresponding Author(s): SCHNICK M.,Email:schnick@mciron.mw.tu-dresden.de   
 引用本文:   
. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX[J]. Frontiers of Materials Science, 2011, 5(2): 98-108.
M. SCHNICK, U. FUESSEL, M. HERTEL, A. SPILLE-KOHOFF, A. B. MURPHY. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX. Front Mater Sci, 2011, 5(2): 98-108.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-011-0134-4
https://academic.hep.com.cn/foms/CN/Y2011/V5/I2/98
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 Radaj D. Schwei?prozesssimulation: Grundlagen und Anwendung. Düsseldorf: DVS-Verlag , 1999 (in German)
2 Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics , 1981, 39(1): 201–225
doi: 10.1016/0021-9991(81)90145-5
3 Wang Y, Shi Q, Tsai H L. Modeling of the effects of surface-active elements on flow patterns and weld penetration. Metallurgical and Materials Transactions B , 2001, 32(1): 145–161
doi: 10.1007/s11663-001-0017-7
4 Haidar J. An analysis of the formation of metal droplets in arc welding. Journal of Physics D: Applied Physics , 1998, 31(10): 1233–1244
doi: 10.1088/0022-3727/31/10/015
5 Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part I: The arc. International Journal of Heat and Mass Transfer , 2007, 50(5-6): 833–846
doi: 10.1016/j.ijheatmasstransfer.2006.08.025
6 Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part II: The metal. International Journal of Heat and Mass Transfer , 2007, 50(5-6): 808–820
doi: 10.1016/j.ijheatmasstransfer.2006.08.026
7 Lowke J J, Tanaka M. ‘LTE-diffusion approximation’ for arc calculations. Journal of Physics D: Applied Physics , 2006, 39(16): 3634–3643
doi: 10.1088/0022-3727/39/16/017
8 Spille-Kohoff A. Numerische Simulation des ChopArc-Schwei?prozesses’ final research report: ChopArc. Stuttgart: Frauenhofer IRB Verlag , 2005
9 Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes. Journal of Physics D: Applied Physics , 1997, 30(14): 2033–2042
doi: 10.1088/0022-3727/30/14/011
10 Sansonnens L, Haidar J, Lowke J J. Prediction of properties of free burning arcs including effects of ambipolar diffusion. Journal of Physics D: Applied Physics , 2000, 33(2): 148–157
doi: 10.1088/0022-3727/33/2/309
11 Metzke E, Sch?pp H. Spektralanalyse Metall-Lichtbogenplasma. Abschlussbericht ChopArc . Stuttgart: Frauenhofer IRB Verlag, 2005 (in German)
12 Goecke S F. Auswirkungen von aktivgaszumischungen im vpm-bereich zu argon auf das mig-impulsschwei?en von aluminium. Dissertation for the Doctoral Degree . Berlin: Technical University of Berlin, 2004 (in German)
13 Pellerin N, Zielińska S, Pellerin S, . Experimental investigations of the arc MIG-MAG welding. AIP Conference Proceedings , 2006, 812: 80–87
doi: 10.1063/1.2168801
14 Zielińska S, Musio? K, Dzier??ga K, . Investigations of GMAW plasma by optical emission spectroscopy. Plasma Sources Science and Technology , 2007, 16(4): 832–838
doi: 10.1088/0963-0252/16/4/019
15 Tashiro S, Tanaka M, Nakata K, . Plasma properties of helium gas tungsten arc with metal vapour. Science and Technology of Welding and Joining , 2007, 12(3): 202–207
doi: 10.1179/174329307X164391
16 Yamamoto K, Tanaka M, Tashiro S, . Numerical simulation for TIG welding of stainless steel with metal vapor. ICCES , 2008, 7(1): 1–6
17 Yamamoto K, Tanaka M, Tashiro S, . Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding. Science and Technology of Welding and Joining , 2008, 13(6): 566–572
doi: 10.1179/174329308X319235
18 Lago F, Gonzalez J J, Freton P, . A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model. Journal of Physics D: Applied Physics , 2003, 37(6): 883–897
doi: 10.1088/0022-3727/37/6/013
19 Murphy A B. Thermal plasmas in gas mixtures. Journal of Physics D: Applied Physics , 2001, 34(20): R151–R173
doi: 10.1088/0022-3727/34/20/201
20 Schnick M, Füssel U, Hertel M, . Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission. Journal of Physics D: Applied Physics , 2010, 43(2): 022001
doi: 10.1088/0022-3727/43/2/022001
21 Schnick M, Fuessel U, Hertel M, . Modelling of gas-metal arc welding taking into account metal vapour. Journal of Physics D: Applied Physics , 2010, 43(43): 434008
doi: 10.1088/0022-3727/43/43/434008
22 Menart J, Malik S. Net emission coefficients for argon-iron thermal plasmas. Journal of Physics D: Applied Physics , 2002, 35(9): 867–874
doi: 10.1088/0022-3727/35/9/306
23 Murphy A B. A comparison of treatments of diffusion in thermal plasmas. Journal of Physics D: Applied Physics , 1996, 29(7): 1922–1932
doi: 10.1088/0022-3727/29/7/029
24 Heberlein J, Mentel J, Pfender E. The anode region of electric arcs: a survey. Journal of Physics D: Applied Physics , 2010, 43(2): 023001
doi: 10.1088/0022-3727/43/2/023001
25 Farmer A J D, Haddad G N. Rayleigh scattering measurements in a free-burning argon arc. Journal of Physics D: Applied Physics , 1988, 21(3): 426–431
doi: 10.1088/0022-3727/21/3/008
26 Murphy A B, Farmer A J D, Haidar J. Laser-scattering measurements of temperature profiles of a free-burning arc. Applied Physics Letters , 1992, 60(11): 1304–1306
doi: 10.1063/1.107324
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed