Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX
Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX
M. SCHNICK1(), U. FUESSEL1, M. HERTEL1, A. SPILLE-KOHOFF2, A. B. MURPHY3
1. Institute of Surface and Manufacturing Technology, Technische Universitat Dresden, Dresden, Germany; 2. CFX Berlin Software GmBH, Berlin, Germany; 3. CSIRO Materials Science and Engineering, Lindfield NSW 2070, Australia
Current numerical models of gas metal arc welding (GMAW) are trying to combine magnetohydrodynamics (MHD) models of the arc and volume of fluid (VoF) models of metal transfer. They neglect vaporization and assume an argon atmosphere for the arc region, as it is common practice for models of gas tungsten arc welding. These models predict temperatures above 20 000 K and a temperature distribution similar to tungsten inert gas (TIG) arcs. However, current spectroscopic temperature measurements in GMAW arcs demonstrate much lower arc temperatures. In contrast to TIG arcs they found a central local minimum of the radial temperature distribution. The paper presents a GMAW arc model that considers metal vapour and which is in a very good agreement with experimentally observed temperatures. Furthermore, the model is able to predict the local central minimum in the radial temperature and the radial electric current density distributions for the first time. The axially symmetric model of the welding torch, the work piece, the wire and the arc (fluid domain) implements MHD as well as turbulent mixing and thermal demixing of metal vapour in argon. The mass fraction of iron vapour obtained from the simulation shows an accumulation in the arc core and another accumulation on the fringes of the arc at 2000 to 5000 K. The demixing effects lead to very low concentrations of iron between these two regions. Sensitive analyses demonstrate the influence of the transport and radiation properties of metal vapour, and the evaporation rate relative to the wire feed. Finally the model predictions are compared with the measuring results of Zielińska et al.
. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX[J]. Frontiers of Materials Science, 2011, 5(2): 98-108.
M. SCHNICK, U. FUESSEL, M. HERTEL, A. SPILLE-KOHOFF, A. B. MURPHY. Numerical investigations of arc behaviour in gas metal arc welding using ANSYS CFX. Front Mater Sci, 2011, 5(2): 98-108.
Radaj D. Schwei?prozesssimulation: Grundlagen und Anwendung. Düsseldorf: DVS-Verlag , 1999 (in German)
2
Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics , 1981, 39(1): 201–225 doi: 10.1016/0021-9991(81)90145-5
3
Wang Y, Shi Q, Tsai H L. Modeling of the effects of surface-active elements on flow patterns and weld penetration. Metallurgical and Materials Transactions B , 2001, 32(1): 145–161 doi: 10.1007/s11663-001-0017-7
4
Haidar J. An analysis of the formation of metal droplets in arc welding. Journal of Physics D: Applied Physics , 1998, 31(10): 1233–1244 doi: 10.1088/0022-3727/31/10/015
5
Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part I: The arc. International Journal of Heat and Mass Transfer , 2007, 50(5-6): 833–846 doi: 10.1016/j.ijheatmasstransfer.2006.08.025
6
Hu J, Tsai H L. Heat and mass transfer in gas metal arc welding. Part II: The metal. International Journal of Heat and Mass Transfer , 2007, 50(5-6): 808–820 doi: 10.1016/j.ijheatmasstransfer.2006.08.026
7
Lowke J J, Tanaka M. ‘LTE-diffusion approximation’ for arc calculations. Journal of Physics D: Applied Physics , 2006, 39(16): 3634–3643 doi: 10.1088/0022-3727/39/16/017
8
Spille-Kohoff A. Numerische Simulation des ChopArc-Schwei?prozesses’ final research report: ChopArc. Stuttgart: Frauenhofer IRB Verlag , 2005
9
Lowke J J, Morrow R, Haidar J. A simplified unified theory of arcs and their electrodes. Journal of Physics D: Applied Physics , 1997, 30(14): 2033–2042 doi: 10.1088/0022-3727/30/14/011
10
Sansonnens L, Haidar J, Lowke J J. Prediction of properties of free burning arcs including effects of ambipolar diffusion. Journal of Physics D: Applied Physics , 2000, 33(2): 148–157 doi: 10.1088/0022-3727/33/2/309
11
Metzke E, Sch?pp H. Spektralanalyse Metall-Lichtbogenplasma. Abschlussbericht ChopArc . Stuttgart: Frauenhofer IRB Verlag, 2005 (in German)
12
Goecke S F. Auswirkungen von aktivgaszumischungen im vpm-bereich zu argon auf das mig-impulsschwei?en von aluminium. Dissertation for the Doctoral Degree . Berlin: Technical University of Berlin, 2004 (in German)
13
Pellerin N, Zielińska S, Pellerin S, . Experimental investigations of the arc MIG-MAG welding. AIP Conference Proceedings , 2006, 812: 80–87 doi: 10.1063/1.2168801
14
Zielińska S, Musio? K, Dzier??ga K, . Investigations of GMAW plasma by optical emission spectroscopy. Plasma Sources Science and Technology , 2007, 16(4): 832–838 doi: 10.1088/0963-0252/16/4/019
15
Tashiro S, Tanaka M, Nakata K, . Plasma properties of helium gas tungsten arc with metal vapour. Science and Technology of Welding and Joining , 2007, 12(3): 202–207 doi: 10.1179/174329307X164391
16
Yamamoto K, Tanaka M, Tashiro S, . Numerical simulation for TIG welding of stainless steel with metal vapor. ICCES , 2008, 7(1): 1–6
17
Yamamoto K, Tanaka M, Tashiro S, . Metal vapour behaviour in thermal plasma of gas tungsten arcs during welding. Science and Technology of Welding and Joining , 2008, 13(6): 566–572 doi: 10.1179/174329308X319235
18
Lago F, Gonzalez J J, Freton P, . A numerical modelling of an electric arc and its interaction with the anode: Part I. The two-dimensional model. Journal of Physics D: Applied Physics , 2003, 37(6): 883–897 doi: 10.1088/0022-3727/37/6/013
19
Murphy A B. Thermal plasmas in gas mixtures. Journal of Physics D: Applied Physics , 2001, 34(20): R151–R173 doi: 10.1088/0022-3727/34/20/201
20
Schnick M, Füssel U, Hertel M, . Metal vapour causes a central minimum in arc temperature in gas-metal arc welding through increased radiative emission. Journal of Physics D: Applied Physics , 2010, 43(2): 022001 doi: 10.1088/0022-3727/43/2/022001
21
Schnick M, Fuessel U, Hertel M, . Modelling of gas-metal arc welding taking into account metal vapour. Journal of Physics D: Applied Physics , 2010, 43(43): 434008 doi: 10.1088/0022-3727/43/43/434008
22
Menart J, Malik S. Net emission coefficients for argon-iron thermal plasmas. Journal of Physics D: Applied Physics , 2002, 35(9): 867–874 doi: 10.1088/0022-3727/35/9/306
23
Murphy A B. A comparison of treatments of diffusion in thermal plasmas. Journal of Physics D: Applied Physics , 1996, 29(7): 1922–1932 doi: 10.1088/0022-3727/29/7/029
24
Heberlein J, Mentel J, Pfender E. The anode region of electric arcs: a survey. Journal of Physics D: Applied Physics , 2010, 43(2): 023001 doi: 10.1088/0022-3727/43/2/023001
25
Farmer A J D, Haddad G N. Rayleigh scattering measurements in a free-burning argon arc. Journal of Physics D: Applied Physics , 1988, 21(3): 426–431 doi: 10.1088/0022-3727/21/3/008
26
Murphy A B, Farmer A J D, Haidar J. Laser-scattering measurements of temperature profiles of a free-burning arc. Applied Physics Letters , 1992, 60(11): 1304–1306 doi: 10.1063/1.107324