In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells
In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells
Zhi HUANG1, Yan CHEN2, Qing-Ling FENG1(), Wei ZHAO3, Bo YU4(), Jing TIAN4, Song-Jian LI4, Bo-Miao LIN5
1. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Department of Ultrasonic Diagnosis, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China; 3. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; 4. Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China; 5. Department of Radiology, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
For reconstruction of irregular bone defects, injectable biomaterials are more appropriate than the preformed biomaterials. We herein develop a biomimetic in situ-forming composite consisting of chitosan (CS) and mineralized collagen fibrils (nHAC), which has a complex hierarchical structure similar to natural bone. The CS/nHAC composites with or without mesenchymal stem cells (MSCs) are injected into cancellous bone defects at the distal end of rabbit femurs. Defects are assessed by radiographic, histological diagnosis and Raman microscopy until 12 weeks. The results show that MSCs improve the biocompatibility of CS/nHAC composites and enhance new bone formation in vivo at 12 weeks. It can be concluded that the injectable CS/nHAC composites combined with MSCs may be a novel method for reconstruction of irregular bone defects.
. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells[J]. Frontiers of Materials Science, 2011, 5(3): 301-310.
Zhi HUANG, Yan CHEN, Qing-Ling FENG, Wei ZHAO, Bo YU, Jing TIAN, Song-Jian LI, Bo-Miao LIN. In vivo bone regeneration with injectable chitosan/hydroxyapatite/collagen composites and mesenchymal stem cells. Front Mater Sci, 2011, 5(3): 301-310.
Sittinger M, Hutmacher D W, Risbud M V. Current strategies for cell delivery in cartilage and bone regeneration. Current Opinion in Biotechnology , 2004, 15(5): 411–418 doi: 10.1016/j.copbio.2004.08.010
2
Hou Q P, De Bank P A, Shakesheff K M. Injectable scaffolds for tissue regeneration. Journal of Materials Chemistry , 2004, 14(13): 1915–1923 doi: 10.1039/b401791a
Cho M H, Kim K S, Ahn H H, . Chitosan gel as an in situ-forming scaffold for rat bone marrow mesenchymal stem cells in vivo. Tissue Engineering Part A , 2008, 14(6): 1099–1108 doi: 10.1089/ten.tea.2007.0305
5
Chenite A, Chaput C, Wang D, . Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials , 2000, 21(21): 2155–2161 doi: 10.1016/S0142-9612(00)00116-2
6
Hoemann C D, Sun J, Legare A, . Tissue engineering of cartilage using an injectable and adhesive chitosan-based cell-delivery vehicle. Osteoarthritis and Cartilage , 2005, 13(4): 318–329 doi: 10.1016/j.joca.2004.12.001
7
Guzman-Morales J, El-Gabalawy H, Pham M H, . Effect of chitosan particles and dexamethasone on human bone marrow stromal cell osteogenesis and angiogenic factor secretion. Bone , 2009, 45(4): 617–626 doi: 10.1016/j.bone.2009.06.014
8
Ahmadi R, Burns A J, de Bruijn J D. Chitosan-based hydrogels do not induce angiogenesis. Journal of Tissue Engineering and Regenerative Medicine , 2010, 4(4): 309–315 doi: 10.1002/term.247
9
Olszta M J, Cheng X G, Jee S S, . Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports , 2007, 58(3-5): 77–116 doi: 10.1016/j.mser.2007.05.001
10
Cui F Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science and Engineering R: Reports , 2007, 57(1-6): 1–27
11
Zhang W, Liao S S, Cui F Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemistry of Materials , 2003, 15(16): 3221–3226 doi: 10.1021/cm030080g
12
Liao S S, Guan K, Cui F Z, . Lumbar spinal fusion with a mineralized collagen matrix and rhBMP-2 in a rabbit model. Spine , 2003, 28(17): 1954–1960 doi: 10.1097/01.BRS.0000083240.13332.F6
13
Li X M, Feng Q L, Jiao Y F, . Collagen-based scaffolds reinforced by chitosan fibres for bone tissue engineering. Polymer International , 2005, 54(7): 1034–1040 doi: 10.1002/pi.1804
14
Huang Z, Feng Q, Yu B, . Biomimetic properties of an injectable chitosan/nano-hydroxyapatite/collagen composite. Materials Science and Engineering C , 2011, 31(3): 683–687 doi: 10.1016/j.msec.2010.12.014
Huang Z, Yu B, Feng Q, . In situ-forming chitosan/nano-hydroxyapatite/collagen gel for the delivery of bone marrow mesenchymal stem cells. Carbohydrate Polymers , 2011, 85(1): 261–267 doi: 10.1016/j.carbpol.2011.02.029
17
Pittenger M F, Mackay a M, Beck S C, . Multilineage potential of adult human mesenchymal stem cells. Science , 1999, 284(5411): 143–147 doi: 10.1126/science.284.5411.143
18
Mankani M H, Kuznetsov S A, Wolfe R M, . In vivo bone formation by human bone marrow stromal cells: Reconstruction of the mouse calvarium and mandible. Stem Cells , 2006, 24(9): 2140–2149 doi: 10.1634/stemcells.2005-0567
19
Gauthier O, Muller R, Von Stechow D, . In vivo bone regeneration with injectable calcium phosphate biomaterial: A three-dimensional micro-computed tomographic, biomechanical and SEM study. Biomaterials , 2005, 26(27): 5444–5453 doi: 10.1016/j.biomaterials.2005.01.072
20
Giavaresi G, Fini M, Salvage J, . Bone regeneration potential of a soybean-based filler: experimental study in a rabbit cancellous bone defects. Journal of Materials Science: Materials in Medicine , 2010, 21(2): 615–626 doi: 10.1007/s10856-009-3870-6
21
Yoon S J, Park K S, Kim M S, . Repair of diaphyseal bone defects with calcitriol-loaded PLGA scaffolds and marrow stromal cells. Tissue Engineering , 2007, 13(5): 1125–1133 doi: 10.1089/ten.2006.0287
22
Kasten P, Vogel J, Geiger F, . The effect of platelet-rich plasma on healing in critical-size long-bone defects. Biomaterials , 2008, 29(29): 3983–3992 doi: 10.1016/j.biomaterials.2008.06.014
23
Hoemann C D, Chen G P, Marchand C, . Scaffold-guided subchondral bone repair implication of neutrophils and alternatively activated arginase-1+ macrophages. The American Journal of Sports Medicine , 2010, 38(9): 1845–1856 doi: 10.1177/0363546510369547
24
de Oliveira R C G, Leles C R, Normanha L M, . Assessments of trabecular bone density at implant sites on CT images. Oral Surgery Oral Medicine Oral Pathology Oral Radiology and Endodontology , 2008, 105(2): 231–238 doi: 10.1016/j.tripleo.2007.08.007
25
Kobayashi F, Ito J, Hayashi T, . A study of volumetric visualization and quantitative evaluation of bone trabeculae in helical CT. Dentomaxillofacial Radiology , 2003, 32(3): 181–185 doi: 10.1259/dmfr/28959099
26
Shinbo J, Mainil-Varlet P, Watanabe A, . Evaluation of early tissue reactions after lumbar intertransverse process fusion using CT in a rabbit. Skeletal Radiology , 2010, 39(4): 369–373 doi: 10.1007/s00256-009-0733-7
27
Bouxsein M L, Boyd S K, Christiansen B A, . Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. Journal of Bone and Mineral Research , 2010, 25(7): 1468–1486 doi: 10.1002/jbmr.141
28
Feldkamp L A, Davis L C, Kress J W. Practical cone-beam algorithm. Journal of the Optical Society of America A: Optics, Image Science, and Vision , 1984, 1(6): 612–619 doi: 10.1364/JOSAA.1.000612
29
Goodyear S R, Gibson L R, Skakle J M S, . A comparison of cortical and trabecular bone from C57 Black 6 mice using Raman spectroscopy. Bone , 2009, 44(5): 899–907 doi: 10.1016/j.bone.2009.01.008
30
Aggarwal S, Pittenger M F. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood , 2005, 105(4): 1815–1822 doi: 10.1182/blood-2004-04-1559
31
Kinnaird T, Stabile E, Burnett M S, . Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation , 2004, 109(12): 1543–1549 doi: 10.1161/01.CIR.0000124062.31102.57
32
Tatebe M, Nakamura R, Kagami H, . Differentiation of transplanted mesenchymal stem cells in a large osteochondral defect in rabbit. Cytotherapy , 2005, 7(6): 520–530 doi: 10.1080/14653240500361350
33
Korda M, Hua J, Little N J, . The effect of mesenchymal stromal cells on the osseoinduction of impaction grafts. Tissue Engineering Part A , 2010, 16(2): 675–683 doi: 10.1089/ten.tea.2008.0643
Liao S S, Cui F Z. In vitro and in vivo degradation of mineralized collagen-based composite scaffold: Nanohydroxyapatite/collagen/poly(L-lactide). Tissue Engineering , 2004, 10(1-2): 73–80 doi: 10.1089/107632704322791718
36
Li X M, Feng Q L, Liu X H, . Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials , 2006, 27(9): 1917–1923 doi: 10.1016/j.biomaterials.2005.11.013
37
Li X M, Liu X H, Zhang G P, . Repairing 25 mm bone defect using fibres reinforced scaffolds as well as autograft bone. Bone , 2008, 43(suppl 1): S94 doi: 10.1016/j.bone.2008.07.185
38
Frassoni F, Labopin M, Bacigalupo A, . Expanded mesenchymal stem cells (MSC), co-infused with HLA identical hemopoietic stem cell transplants, reduce acute and chronic graft versus host disease: A matched pair analysis. Bone Marrow Transplantation , 2002, 29(suppl 2): S2
39
Rasmusson I, Ringden O, Sundberg B, . Mesenchymal stem cells inhibit lymphocyte proliferation by mitogens and alloantigens by different mechanisms. Experimental Cell Research , 2005, 305(1): 33–41 doi: 10.1016/j.yexcr.2004.12.013