Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2011, Vol. 5 Issue (3): 311-321   https://doi.org/10.1007/s11706-011-0143-3
  RESEARCH ARTICLE 本期目录
Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals
Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals
Akimasa KOJI1,2, Javed IQBAL1, Rong-Hai YU1, Zheng-Jun ZHANG1()
1. Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China; 2. Department of Metallurgy and Ceramics Science, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8552, Japan
 全文: PDF(687 KB)   HTML
Abstract

Cobalt and cobalt oxide nanocrystals were synthesized on Si substrates from aqueous cobalt nitrate [Co(NO3)2·6H2O] powder via chemical vapor deposition method. Scanning electron microscope, field emission scanning electron microscope, and transmission electron microscope observations show different morphologies, such as continuous films, nano-bars, nano-dices, and nano-strings, depending on the synthesis temperature. The crystal structure characterization was conducted using X-ray diffraction methods. Furthermore, the properties of the samples were characterized using Raman spectroscopic analysis and vibrating sample magnetometer. The morpholo- gy change was discussed in terms of synthesis environments and chemical interactions between cobalt, oxygen, and silicon.

Key wordscobalt oxide    nanostructure    temperature dependence    magnetic property
收稿日期: 2011-02-21      出版日期: 2011-09-05
Corresponding Author(s): ZHANG Zheng-Jun,Email:zjzhang@tsinghua.edu.cn   
 引用本文:   
. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals[J]. Frontiers of Materials Science, 2011, 5(3): 311-321.
Akimasa KOJI, Javed IQBAL, Rong-Hai YU, Zheng-Jun ZHANG. Synthesis temperature dependence of morphologies and properties of cobalt oxide and silicon nanocrystals. Front Mater Sci, 2011, 5(3): 311-321.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-011-0143-3
https://academic.hep.com.cn/foms/CN/Y2011/V5/I3/311
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
1 Heli H, Yadegari H. Nanoflakes of the cobaltous oxide, CoO: Synthesis and characterization. Electrochimica Acta , 2010, 55(6): 2139-2148
doi: 10.1016/j.electacta.2009.11.047
2 Ganguly T A A, Ahmed J, Ganguli A K, . Arabian Journal of Chemistry, 2010
3 Wade T L, Wegrowe J-E. Template synthesis of nanomaterials. The European Physical Journal- Applied Physics , 2005, 29(1): 3-22
doi: 10.1051/epjap:2005001
4 Bréchignac C, Houdy P, Lahmani M,eds. Nanomaterials and Nanochemistry. Berlin: Springer-Verlag, Berlin Heidelberg, 2007
5 Weller H. Self-organized superlattices of nanoparticles. Angewandte Chemie International Edition in English , 1996, 35(10): 1079-1081
doi: 10.1002/anie.199610791
6 Rodríguez J A, Fernández-García M, eds. Part Introduction, in Synthesis, Properties, and Applications of Oxide Nanomaterials. Hoboken, NJ , USA: John Wiley & Sons, Inc.,2006
7 Shen G X, Chen Y C, Lin C J. Corrosion protection of 316 L stainless steel by a TiO2 nanoparticle coating prepared by sol-gel method. Thin Solid Films , 2005, 489(1-2): 130-136
doi: 10.1016/j.tsf.2005.05.016
8 Heli H, Jabbari A, Majdi S, . Electrooxidation and determination of some non-steroidal anti-inflammatory drugs on nanoparticles of Ni-curcumin-complex-modified electrode. Journal of Solid State Electrochemistry , 2009, 13(12): 1951-1958
doi: 10.1007/s10008-008-0758-1
9 Heli H, Jabbari A, Zarghan M, . Copper nanoparticles-carbon microparticles nanocomposite for electrooxidation and sensitive detection of sotalol. Sensors and Actuators B: Chemical , 2009, 140(1): 245-251
doi: 10.1016/j.snb.2009.04.021
10 Wronski Z S. Materials for rechargeable batteries and clean hydrogen energy sources. International Materials Reviews , 2001, 46(1): 1-49
doi: 10.1179/095066001101528394
11 Hosono E, Fujihara S, Honma I, . Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. Journal of Power Sources , 2006, 158(1): 779-783
doi: 10.1016/j.jpowsour.2005.09.052
12 Barrera E, González I, Viveros T. A new cobalt oxide electrodeposit bath for solar absorbers. Solar Energy Materials and Solar Cells , 1998, 51(1): 69-82
doi: 10.1016/S0927-0248(97)00209-2
13 Casella I G, Guascito M R. Electrochemical preparation of a composite gold-cobalt electrode and its electrocatalytic activity in alkaline medium. Electrochimica Acta , 1999, 45(7): 1113-1120
doi: 10.1016/S0013-4686(99)00315-1
14 Jyoko Y, Kashiwabara S, Hayashi Y. Preparation of giant magnetoresistance Co/Cu multilayers by electrodeposition. Journal of The Electrochemical Society , 1997, 144(1): L5-L8
doi: 10.1149/1.1837354
15 Phase D, Choudhary R J, Ganesan V, . Manipulation of magnetic nanostructures through low temperature metal-oxygen chemistry: Co/CoO exchange biased nanodonuts and Co nanotips. Solid State Communications , 2009, 149(7-8): 277-280
doi: 10.1016/j.ssc.2008.12.019
16 Kadam L D, Pawar S H, Patil P S. Studies on ionic intercalation properties of cobalt oxide thin films prepared by spray pyrolysis technique. Materials Chemistry and Physics , 2001, 68(1-3): 280-282
doi: 10.1016/S0254-0584(00)00365-5
17 Thokale R N, Patil P S, Dongare M B. Double-exposure holographic interferometry technique used for characterization of electrodeposited cobalt oxide thin films. Materials Chemistry and Physics , 2002, 74(2): 143-149
doi: 10.1016/S0254-0584(01)00470-9
18 Trasatti S. Physical electrochemistry of ceramic oxides. Electrochimica Acta , 1991, 36(2): 225-241
doi: 10.1016/0013-4686(91)85244-2
19 Schumacher L C, Holzhueter I B, Hill I R, . Semiconducting and electrocatalytic properties of sputtered cobalt oxide films. Electrochimica Acta , 1990, 35(6): 975-984
doi: 10.1016/0013-4686(90)90030-4
20 Barbero C, Planes G A, Miras M C. Redox coupled ion exchange in cobalt oxide films. Electrochemistry Communications , 2001, 3(3): 113-116
doi: 10.1016/S1388-2481(01)00107-2
21 Casella I G, Gatta M. Study of the electrochemical deposition and properties of cobalt oxide species in citrate alkaline solutions. Journal of Electroanalytical Chemistry , 2002, 534(1): 31-38
doi: 10.1016/S0022-0728(02)01100-2
22 Casella I G. Electrodeposition of cobalt oxide films from carbonate solutions containing Co(II)-tartrate complexes. Journal of Electroanalytical Chemistry , 2002, 520(1-2): 119-125
doi: 10.1016/S0022-0728(02)00642-3
23 Buratti S, Brunetti B, Mannino S. Amperometric detection of carbohydrates and thiols by using a glassy carbon electrode coated with Co oxide/multi-wall carbon nanotubes catalytic system. Talanta , 2008, 76(2): 454-457
doi: 10.1016/j.talanta.2008.03.031
24 Jia W, Guo M, Zheng Z, . Electrocatalytic oxidation and reduction of H2O2 on vertically aligned Co3O4 nanowalls electrode: Toward H2O2 detection. Journal of Electroanalytical Chemistry , 2009, 625(1): 27-32
doi: 10.1016/j.jelechem.2008.09.020
25 Houshmand M, Jabbari A, Heli H, . Electrocatalytic oxidation of aspirin and acetaminophen on a cobalt hydroxide nanoparticles modified glassy carbon electrode. Journal of Solid State Electrochemistry , 2008, 12(9): 1117-1128
doi: 10.1007/s10008-007-0454-6
26 Fan L F, Wu X Q, Guo M D, . Cobalt hydroxide film deposited on glassy carbon electrode for electrocatalytic oxidation of hydroquinone. Electrochimica Acta , 2007, 52(11): 3654-3659
doi: 10.1016/j.electacta.2006.10.027
27 Xu C, Tian Z, Shen P, . Oxide (CeO2, NiO, Co3O4 and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochimica Acta , 2008, 53(5): 2610-2618
doi: 10.1016/j.electacta.2007.10.036
28 Nkeng P, Koenig J-F, Gautier J L, . Enhancement of surface areas of Co3O4 and NiCo2O4 electrocatalysts prepared by spray pyrolysis. Journal of Electroanalytical Chemistry , 1996, 402(1): 81-89
doi: 10.1016/0022-0728(95)04254-7
29 Zhu Y, Li H, Koltypin Y, . Preparation of nanosized cobalt hydroxides and oxyhydroxide assisted by sonication. Journal of Materials Chemistry , 2002, 12(3): 729-733
doi: 10.1039/b107750c
31 Da Silva L M, Boodts J F C, De Faria L A. Oxygen evolution at RuO2(x)+Co3O4(1-x) electrodes from acid solution. Electrochimica Acta , 2001, 46(9): 1369-1375
doi: 10.1016/S0013-4686(00)00716-7
32 Jiang S P, Lin Z C, Tseung A C C. Homogeneous and heterogeneous catalytic reactions in cobalt oxide/graphite air electrodes. II. Homogeneous role of Cu(II) ions during oxygen reduction on Co3O4/graphite electrodes. Journal of The Electrochemical Society , 1990, 137(3): 764-769
doi: 10.1149/1.2086551
33 Ni Y, Ge X, Zhang Z, . A simple reduction-oxidation route to prepare Co3O4 nanocrystals. Materials Research Bulletin , 2001, 36(13-14): 2383-2387
34 ?vegl F, Orel B, Grabec-?vegl I, . Characterization of spinel Co3O4 and Li-doped Co3O4 thin film electrocatalysts prepared by the sol-gel route. Electrochimica Acta , 2000, 45(25-26): 4359-4371
35 Casella I G, Guascito M R. Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution. Journal of Electroanalytical Chemistry , 1999, 476(1): 54-63
doi: 10.1016/S0022-0728(99)00366-6
36 Schmid G, ed. Clusters and Colloids: From Theory to Applications. Weinheim: VCH, 1994
37 Poizot P, Laruelle S, Grugeon S, . Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature , 2000, 407(6803): 496-498
doi: 10.1038/35035045
38 Penn R L, Stone A T, Veblen D R. Defects and disorder: Probing the surface chemistry of heterogenite (CoOOH) by dissolution using hydroquinone and iminodiacetic acid. The Journal of Physical Chemistry B , 2001, 105(20): 4690-4697
doi: 10.1021/jp0039868
39 Pralong V, Delahaye-Vidal A, Beaudoin B, . Electrochemical behavior of cobalt hydroxide used as additive in the nickel hydroxide electrode. Journal of The Electrochemical Society , 2000, 147(4): 1306-1313
doi: 10.1149/1.1393355
40 Nemudry A, Rudolf P, Sch?llhorn R. Topotactic electrochemical redox reactions of the defect perovskite SrCoO2.5+x. Chemistry of Materials , 1996, 8(9): 2232-2238
doi: 10.1021/cm950504+
41 Yin S, Xue W, Ding X-L, . Formation, distribution, and structures of oxygen-rich iron and cobalt oxide clusters. International Journal of Mass Spectrometry , 2009, 281(1-2): 72-78
42 Torchio R, Meneghini C, Mobilio S, . Microstructure and magnetic properties of colloidal cobalt nano-clusters. Journal of Magnetism and Magnetic Materials , 2010, 322(21): 3565-3571
doi: 10.1016/j.jmmm.2010.07.008
43 Pal J, Chauhan P. Study of physical properties of cobalt oxide (Co3O4) nanocrystals. Materials Characterization , 2010, 61(5): 575-579
doi: 10.1016/j.matchar.2010.02.017
44 Ahmed J, Ahmad T, Ramanujachary K V, . Development of a microemulsion-based process for synthesis of cobalt (Co) and cobalt oxide (Co3O4) nanoparticles from submicrometer rods of cobalt oxalate. Journal of Colloid and Interface Science , 2008, 321(2): 434-441
doi: 10.1016/j.jcis.2008.01.052
45 Luo Z, Fang Y, Zhou X, . Synthesis of highly ordered Iron/Cobalt nanowire arrays in AAO templates and their structural properties. Materials Chemistry and Physics , 2008, 107(1): 91-95
doi: 10.1016/j.matchemphys.2007.06.047
46 Kandalkar S G, Gunjakar J L, Lokhande C D, . Synthesis of cobalt oxide interconnected flacks and nano-worms structures using low temperature chemical bath deposition. Journal of Alloys and Compounds , 2009, 478(1-2): 594-598
47 Vickers D, Archer L A, Floyd-Smith T. Synthesis and characterization of cubic cobalt oxide nanocomposite fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2009, 348(1-3): 39-44
48 Xu R, Wang J W, Li Q Y, . Porous cobalt oxide (Co3O4) nanorods: Facile syntheses, optical property and application in lithium-ion batteries. Journal of Solid State Chemistry , 2009, 182(11): 3177-3182
doi: 10.1016/j.jssc.2009.08.033
49 Lou X D, Han J, Chu W F, . Synthesis and photocatalytic property of Co3O4 nanorods. Materials Science and Engineering B , 2007, 137(1-3): 268-271
50 Duan X, Lieber C M. General synthesis of compound semiconductor nanowires. Advanced Materials , 2000, 12(4): 298-302
doi: 10.1002/(SICI)1521-4095(200002)12:4<298::AID-ADMA298>3.0.CO;2-Y
51 Dai H, Wong E W, Lu Y Z, . Synthesis and characterization of carbide nanorods. Nature , 1995, 375(6534): 769-771
doi: 10.1038/375769a0
52 Li F J, Zhang S, Kong J H, . Study of silicon dioxide nanowires grown via rapid thermal annealing of sputtered amorphous carbon films doped with Si. Nanoscience and Nanotechnology Letters , 2011, 3(2): 240-245
53 Wagner R S, Ellis W C. Vapor-liquid-solid mechanism of single crystal growth. Applied Physics Letters , 1964, 4(5): 89-90
doi: 10.1063/1.1753975
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed