Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2011, Vol. 5 Issue (3): 266-281   https://doi.org/10.1007/s11706-011-0145-1
  REVIEW ARTICLE 本期目录
Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis]
Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis]
Shun-Feng WANG1, Xiao-Hong WANG1(), Lu GAN1, Matthias WIENS2, Heinz C. SCHR?DER2, Werner E. G. MüLLER2()
1. National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, 26 Baiwanzhuang Dajie, Beijing 100037, China; 2. Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, D-55128 Mainz, Germany
 全文: PDF(1577 KB)   HTML
Abstract

In the last 15 years biomineralization, in particular biosilicification (i.e., the formation of biogenic silica, SiO2), has become an exciting source of inspiration for the development of novel bionic approaches, following “Nature as model”. Among the silica forming organisms there are the sponges that have the unique property to catalyze their silica skeletons by a specific enzyme termed silicatein. In the present review we summarize the present state of knowledge on silicatein-mediated “biosilica” formation in marine sponges, the involvement of further molecules in silica metabolism and their potential application in biomedicine. Recent advancements in the production of bone replacement material and in the potential use as a component in the treatment of osteoporosis are highlighted.

Key wordsbiomineralization    biosilica    medicine    biomaterials    osteoporosis
收稿日期: 2011-04-30      出版日期: 2011-09-05
Corresponding Author(s): WANG Xiao-Hong,Email:wxh0408@hotmail.com (X.H.W.); E. G. MüLLER Werner,Email:wmueller@uni-mainz.de (W.E.G.M.)   
 引用本文:   
. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis][J]. Frontiers of Materials Science, 2011, 5(3): 266-281.
Shun-Feng WANG, Xiao-Hong WANG, Lu GAN, Matthias WIENS, Heinz C. SCHR?DER, Werner E. G. MüLLER. Biosilica-glass formation using enzymes from sponges [silicatein]: Basic aspects and application in biomedicine [bone reconstitution material and osteoporosis]. Front Mater Sci, 2011, 5(3): 266-281.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-011-0145-1
https://academic.hep.com.cn/foms/CN/Y2011/V5/I3/266
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
1 St?ber W, Fink A, Bohn E. Controlled growth of monodisperse silica spheres in the micron size range. Journal of Colloid and Interface Science, 1968, 26(1): 62–69
doi: 10.1016/0021-9797(68)90272-5
2 Brinker C J, Scherrer G W. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing.London: Academic Press, 1990
3 Hench L L, West J K. The sol-gel process. Chemical Reviews, 1990, 90(1): 33–72
4 B?uerlein E. Biomineralization. Cambridge: Wiley-VCH, 2004
doi: 10.1002/3527604138
5 Müller W E G. Molecular phylogeny of metazoa (animals): Monophyletic origin. Naturwissenschaften, 1995, 82(7): 321–329
6 Müller W E G. Molecular phylogeny of Eumetazoa: genes in sponges (Porifera) give evidence for monophyly of animals. Progress in Molecular and Subcellular Biology, 1998, 19: 89–132
7 Müller W E G.Review: How was metazoan threshold crossed? The hypothetical Urmetazoa. Comparative Biochemistry and Physiology, 2001, 129(2-3): 433–460
8 Wang X H, Zhang X H, Schr?der H C, . Giant basal spicule from the deep-sea glass sponge Monorhaphis chuni: synthesis of the largest bio-silica structure on Earth by silicatein. Frontiers of Materials Science in China, 2009, 3(3): 226–240
9 Wang X, Wiens M, Schr?der H C, . Morphology of sponge spicules: silicatein a structural protein for bio-silica formation. Advanced Engineering Materials, 2010, 12(9): B422–B437
10 Simpson T L. The Cell Biology of Sponges.New York: Springer-Verlag, 1984
11 Sandford F. Physical and chemical analysis of the siliceous skeleton in six sponges of two groups (demospongiae and hexactinellida). Microscopy Research and Technique , 2003, 62(4): 336–355
12 Shimizu K, Cha J, Stucky G D, . Silicatein α: Cathepsin L-like protein in sponge biosilica. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(11): 6234–6238
13 Perry C C, Belton D, Shafran K. Studies of biosilicas; structural aspects, chemical principles, model studies and the future. Progress in Molecular and Subcellular Biology, 2003, 33: 269–299
14 Iler R K. The Chemistry of Silica.New York: John Wiley & Sons, 1979
15 Perry C C. Silicification: the process by which organisms capture and mineralize silica. Reviews in Mineralogy and Geochemistry, 2003, 54(1): 291–327
16 Cha J N, Shimizu K, Zhou Y, . Silicatein filaments and subunits from a marine sponge direct the polymerization of silica and silicones in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(2): 361–365
17 Weaver J, Morse D E. Molecular biology of demosponge axial filaments and their roles in biosilification. Microscopy Research and Technique, 2003, 62(4): 356–367
18 Krasko A, Lorenz B, Batel R, . Expression of silicatein and collagen genes in the marine sponge Suberites domuncula is controlled by silicate and myotrophin. European Journal of Biochemistry, 2000, 267(15): 4878–4887
19 Krasko A, Gamulin V, Seack J, . Cathepsin, a major protease of the marine sponge Geodia cydonium: purification of the enzyme and molecular cloning of cDNA.Molecular Marine Biology and Biotechnology , 1997, 6(4): 296–307
20 Schr?der H C, Perovi?-Ottstadt S, Wiens M, . Differentiation capacity of the epithelial cells in the sponge Suberites domuncula. Cell and Tissue Research, 2004, 316(2): 271–280
21 Schr?der H C, Perovi?-Ottstadt S, Grebenjuk V A, .. Biosilica formation in spicules of the sponge Suberites domuncula: synchronous expression of a gene cluster. Genomics, 2005, 85(6): 666–678
22 Müller W E G, Belikov S I, Tremel W, . Siliceous spicules in marine demosponges (example Suberites domuncula). Micron, 2006, 37(2): 107–120
23 Kaluzhnaya O V, Belikov S I, Schr?der H C, . Dynamics of skeleton formation in the Lake Baikal sponge Lubomirskia baicalensis. Part II. Molecular biological studies. Naturwissenschaften , 2005, 92(3): 134–138
24 Wiens M, Belikov S I, Kaluzhnaya O V, . Molecular control of serial module formation along the apical-basal axis in the sponge Lubomirskia baicalensis: silicateins, mannose-binding lectin and mago nashi. Development Genes and Evolution, 2006, 216(5): 229–242
25 Krasko A, Schr?der H C, Batel R, . Iron induces proliferation and morphogenesis in primmorphs from the marine sponge Suberites domuncula.DNA and Cell Biology , 2002, 21(1): 67–80
26 Müller W E G, Krasko A, Le Pennec G, . Biochemistry and cell biology of silica formation in sponges. Microscopy Research and Technique, 2003, 62: 368–377
27 Müller W E G, Rothenberger M, Boreiko A, . Formation of siliceous spicules in the marine demosponge Suberites domuncula. Cell and Tissue Research, 2005, 321(2): 285–297
28 Tao K, Stearns N A, Dong J, . The proregion of cathepsin L is required for proper folding, stability and ER exit. Archives of Biochemistry and Biophysics, 1994, 311(1): 19–27
29 Schr?der H C, Wiens M, Schlo?macher U, . Silicatein-mediated polycondensation of orthosilicic acid: modeling of catalytic mechanism involving ring formation. Silicon, 2011,
doi: 10.1007/s12633-010-9057-4 pmid: (in press)
30 Schr?der H C,Krasko A, Le Pennec G, . Silicase, an enzyme which degrades biogenous amorphous silica: contribution to the metabolism of silica deposition in the demosponge Suberites domuncula. Progress in Molecular and Subcellular Biology, 2003, 33: 249–268
31 Sly W S, Hu P Y. Human carbonic anhydrases and carbonic anhydrase deficiencies. Annual Review of Biochemistry, 1995, 64: 375–401
32 Müller W E G, Schr?der H C, Loren B, . Silicatein-mediated synthesis of amorphous silicates and siloxanes and use thereof. European Patent, No. EP 1320624, 2000-07-28
33 Müller W E G, Schr?der H C, Krakso A. Decomposition and modification of silicate and silicone by silicase and use of the reversible enzyme. US Patent, No. US 2007218044, 2007-09-20
34 Sun Q, Vrieling E G, van Santen R A, . Bioinspired synthesis of mesoporous silicas. Current Opinion in Solid State and Materials Science , 2004, 8(2): 111–120
35 Schr?der H C, Brandt D, Schlo?macher U, . Enzymatic production of biosilica glass using enzymes from sponges: basic aspects and application in nanobiotechnology (material sciences and medicine). Naturwissenschaften, 2007, 94(5): 339–359
36 Müller W E G, Wang X M, Belikov S I, . Formation of siliceous spicules in demosponges: example Suberites domuncula. In: B?uerlein E, ed. Handbook of Biomineralization, Vol. 1: Biological Aspects and Structure Formation. Weinheim: Wiley-VCH, 2007, 59–82
37 Schr?der H C, Wang X H, Tremel W, . Biofabrication of biosilica-glass by living organisms. Natural Product Reports, 2008, 25(3): 455–474
38 Müller W E G, Wang X H, Cui F Z, . Sponge spicules as blueprints for the biofabrication of inorganic-organic composites and biomaterials. Applied Microbiology and Biotechnology, 2009, 83(3): 397–413
39 Wiens M, Wang X, Natalio F, . Bioinspired fabrication of bio-silica-based bone-substitution materials. Advanced Engineering Materials, 2010, 12(9): B438–B450
40 Hench L L, Wilson J.Surface-active biomaterials. Science, 1984, 226(4675): 630–636
41 Yamamuro T, Hench L L, Wilson J. Handbook on Bioactive Ceramics, vol. I: Bioactive Glasses and Glass-Ceramics. Boca Raton, FL: CRC Press, 1990
42 Schr?der H C, Boreiko O, Krasko A, . Mineralisation of SaOS-2 cells on enzymatically (silicatein) modified bioactive osteoblast-stimulating surfaces. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005, 75B(2): 387–392
43 Curnow P, Kisailus D, Morse D E. Biocatalytic synthesis of poly(l-lactide) by native and recombinant forms of the silicatein enzymes. Angewandte Chemie International Edition, 2006, 45(4): 613–616
44 Wiens M, Wang X H, Schr?der H C, . The role of biosilica in the osteoprotegerin/RANKL ratio in human osteoblast-like cells. Biomaterials, 2010, 31(30): 7716–7725
45 Wiens M, Wang X H, Schlo?macher U, . Osteogenic potential of bio-silica on human osteoblast-like (SaOS-2) cells. Calcified Tissue International, 2010, 87(6): 513–524
46 Struyf E, Conley D J. Silica: an essential nutrient in wetland biogeochemistry. Frontiers in Ecology and the Environment, 2009, 7(2): 88–94
47 Carlisle E M.In vivo requirement for silicon in articular cartilage and connective tissue formation in the chick. The Journal of Nutrition, 1976, 106: 478–484
48 Van Dyck K, Van Cauwenbergh R, Robberecht H, . Bioavailability of silicon from food and food supplements. Fresenius’ Journal of Analytical Chemistry, 1999, 363(5-6): 541–544
49 Carlisle E M.Silicon: an essential element for the chick. Science, 1972, 178(4061): 619–621
50 Müller W E G, Boreiko A, Wang X H, . Morphogenetic activity of silica and bio-silica on the expression of genes controlling biomineralization using SaOS-2 cells. Calcified Tissue International, 2007, 81(5): 382–393
51 Aldinger G, Herr G, Küsswetter W, . Bone morphogenetic protein: a review. International Orthopaedics, 1991, 15(2): 169–177
52 Kamegai A, Tanabe T, Nagahara K, . Pathologic and enzyme histochemical studies on bone formation induced by bone morphogenetic protein in mouse muscle tissue. Acta Histochemica, 1990, 89(1): 25–35
53 Chung C-H, Golub E E, Forbes E, . Mechanism of action of β-glycerophosphate on bone cell mineralization. Calcified Tissue International, 1992, 51(4): 305–311
54 Schwarz K, Milne D B. Growth-promoting effects of silicon in rats. Nature , 1972, 239(5371): 333–334
55 Borsje M A, Ren Y, de Haan-Visser H W, . Comparison of low-intensity pulsed ultrasound and pulsed electromagnetic field treatments on OPG and RANKL expression in human osteoblast-like cells. The Angle Orthodontist, 2010, 80(3): 498–503
56 Simonet W S, Lacey D L, Dunstan C R, . Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell, 1997, 89(2): 309–319
57 Wang J C, Hemavathy K, Charles W, . Osteosclerosis in idiopathic myelofibrosis is related to the overproduction of osteoprotegerin (OPG). Experimental Hematology, 2004, 32(10): 905–910
58 Lane N E, Yao W. Developments in the scientific understanding of osteoporosis. Arthritis Research & Therapy, 2009, 11(3): 228 (8 pages)
59 W?hler F. Ueber künstliche Bildung des Harnstoffs. Annalen der Physik, 1828 , 88(2): 253–256 (in German)
60 Pasteur L. Mémoire sur la fermentation appelée lactique. Mémoires de la Société (Royale) des Sciences, de l’Agriculture et des Arts à Lille, 1857, 5: 13–26 (in French)
doi: 10.1016/j.exphem.2004.07.006
61 Hoppe-Seyler E F. Preface. Zeitschrift für Physiologische Chemie, 1877, 1: 1 (in German)
62 Spallanzani L, Senebier J. Experiences sur la Digestion de l’Homme et de Différentes especes d’Animaux. Geneve: Chez Barthe?lemi Chirol, 1784 (in French)
doi: 10.1002/andp.18280880206
63 Müller W E G, Wang X H, Diehl-Seifert B, . Inorganic polymeric phosphate/polyphosphate as an inducer of alkaline phosphatase and a modulator of intracellular Ca2+ level in osteoblasts (SaOS-2 cells) in vitro. Acta Biomaterialia, 2011, 7(6): 2661–2671
64 Aoba T, Fukae M, Tanabe T, . Selective adsorption of porcine-amelogenins onto hydroxyapatite and their inhibitory activity on hydroxyapatite growth in supersaturated solutions. Calcified Tissue International, 1987, 41(5): 281–289
65 Carlisle E M.Silicon as an essential trace element in animal nutrition. In: Ciba Foundation Symposium 121. Wiley, Chichester, UK , 1986, 123–139
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed