Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2012, Vol. 6 Issue (4): 283-296   https://doi.org/10.1007/s11706-012-0182-4
  REVIEW ARTICLE 本期目录
The role of hyaluronic acid in biomineralization
The role of hyaluronic acid in biomineralization
Zhen-Hua CHEN1,2(), Xiu-Li REN1, Hui-Hui ZHOU3, Xu-Dong LI2()
1. College of Pharmacy, Liaoning Medical University, Jinzhou 121001, China; 2. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China; 3. Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
 全文: PDF(489 KB)   HTML
Abstract

Hyaluronic acid has been extensively investigated due to intrinsic properties of natural origin and strong ability to bind ions in water. Hyaluronic acid is an excellent crystal modifier because its abundant negatively charged carboxyl groups can bind the cations protruding from the crystal lattice. In this review, we mainly present the latest work focus on the role of hyaluronic acid in controlling the crystallization, breaking the symmetry of crystal, and the surface funtionalization of nanocrystals.

Key wordshyaluronic acid    biomineralization    crystal growth    extracellular matrix    bone and cartilage repair
收稿日期: 2012-09-30      出版日期: 2012-12-05
Corresponding Author(s): CHEN Zhen-Hua,Email:zhchen56@yahoo.com.cn (Z.H.C.); LI Xu-Dong,Email:xli20004@yahoo.com (X.D.L.)   
 引用本文:   
. The role of hyaluronic acid in biomineralization[J]. Frontiers of Materials Science, 2012, 6(4): 283-296.
Zhen-Hua CHEN, Xiu-Li REN, Hui-Hui ZHOU, Xu-Dong LI. The role of hyaluronic acid in biomineralization. Front Mater Sci, 2012, 6(4): 283-296.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-012-0182-4
https://academic.hep.com.cn/foms/CN/Y2012/V6/I4/283
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 Ropes M W, Robertson W V B, Rossmeisl E C, . Synovial fluid mucin. Acta Medica Scandinavica , 1947, 128(s196): 700–744
2 Meyer K, Smyth E M, Dawson M H. The isolation of a mucopolysaccharide form synovial fluid. Journal of Biological Chemistry , 1939, 128: 319–327
3 Meyer K, Palmer J W. The polysaccharide of the vitreous humour. Journal of Biological Chemistry , 1934, 107: 629–634
4 Ropes M W, Bauer W. Synovial Fluid Changes in Joint Disease. Canbridge MA: Harvard University Press, 1953
5 Sunblad L. Studies on hyaluronic acid in synovial fluids. Acta Societatis Medicorum Upsaliensis , 1953, 58(3–4): 113–238
6 Sundblad L. Glycosaminoglycans and glycoproteins in synovial fluid. In: Balazs E A, Jeanloz R W, eds. The Amino Sugars . New York, London: Academic Press, 1964, 229–250
7 Coleman P J, Scott D, Mason R M, . Characterization of the effect of high molecular weight hyaluronan on trans-synovial flow in rabbit knees. The Journal of Physiology , 1999, 514(1): 265–282
8 Blumberg B S, Ogston A G. Physicochemical studies on hyaluronic acid. In: Chemistry and Biology Mucopolysaccha-rides (Ciba Foundation Symposium ). London: Churchill, 1953, 22–37
9 Balazs E A. Physical chemistry of hyaluronic acid. Federation Proceedings , 1958, 17(4): 1086–1093
10 Almond A, Sheehan J K, Brass A. Molecular dynamics simulations of the two disaccharides of hyaluronan in aqueous solution. Glycobiology , 1997, 7(5): 597–604
11 Almond A, Brass A, Sheehan J K. Dynamic exchange between stabilized conformations predicted for hyaluronan tetrasacchari-des: comparison of molecular dynamics simulations with available NMR data. Glycobiology , 1998, 8(10): 973–980
12 Almond A, Brass A, Sheehan J K. Oligosaccharides as model systems for understanding water-biopolymer interaction: hydrated dynamics of a hyaluronan decamer. Journal of Physical Chemistry B , 2000, 104(23): 5634–5640
13 Almond A, Brass A, Sheehan J K. Deducing polymeric structure from aqueous molecular dynamics simulations of oligosaccha-rides: predictions from simulations of hyaluronan tetrasaccha-rides compared with hydrodynamic and X-ray fibre diffraction data. Journal of Molecular Biology , 1998, 284(5): 1425–1437
14 Toole B P. Hyaluronan: from extracellular glue to pericellular cue. Nature Reviews Cancer , 2004, 4(7): 528–539
15 Sutherland I W. Novel and established applications of microbial polysaccharides. Trends in Biotechnology , 1998, 16(1): 41–46
16 Morimoto K, Yamaguchi H, Iwakura Y, . Effects of viscous hyaluronate-sodium solutions on the nasal absorption of vasopressin and an analogue. Pharmaceutical Research , 1991, 8(4): 471–474
17 Luo Y, Ziebell M R, Prestwich G D. A hyaluronic acid-taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules , 2000, 1(2): 208–218
18 Adams M E. Viscosupplementation: a treatment for osteoarthritis. Journal of Rheumatology , 1993, 20(s39): 1–24
19 Han S Y, Han H S, Lee S C, . Mineralized hyaluronic acid nanoparticles as a robust drug carrier. Journal of Materials Chemistry , 2011, 21(22): 7996–8001
20 Chen Z H, Zhou H H, Wang X L, . Controlled mineralization by extracellular matrix: monodisperse, colloidally stable calcium phosphate-hyaluronan hybrid nanospheres. Chemical Communications , 2010, 46(8): 1278–1280
21 Chen Z H, Wang C H, Zhou H H, . Biomimetic crystallization of toplike calcite single crystals with an extensive (00.1) face in the presence of sodium hyaluronate. Crystal Growth & Design , 2010, 10(11): 4722–4727
22 Chen Z H, Wang C H, Zhou H H, . Modulation of calcium oxalate crystallization by commonly consumed green tea. CrystEngComm , 2010, 12(3): 845–852
23 Hou S, Xu Q, Tian W, . The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. Journal of Neuroscience Methods , 2005, 148(1): 60–70
24 Ren Y J, Zhou Z Y, Cui F Z, . Hyaluronic acid/polylysine hydrogel as a transfer system for transplantation of neural stem cells. Journal of Bioactive and Compatible Polymers , 2009, 24(1): 56–62
25 Hardingham T E, Muir H. The specific interaction of hyaluronic acid with cartillage proteoglycans. Biochimica et Biophysica Acta , 1972, 279(2): 401–405
26 Huang L, Cheng Y Y, Koo P L, . The effect of hyaluronan on osteoblast proliferation and differentiation in rat calvarial-derived cell cultures. Journal of Biomedical Materials Research Part A , 2003, 66A(4): 880–884
27 Fraser J R E, Laurent T C, Laurent U B G. Hyaluronan: its nature, distribution, functions and turnover. Journal of Internal Medicine , 1997, 242(1): 27–33
28 Laurent T C, Fraser J R. Hyaluronan. FASEB Journal , 1992, 6(7): 2397–2404
29 Lowenstam H A, Weiner S. On Biomineralization. Oxford: Oxford University Press, 1989, 324
30 Mann S, Webb J, Williams R J P. Biomineralization. Weinheim: VCH, 1989, 490
31 Simkiss K, Wilbur K M. Biomineralization. San Diego, CA: Academic Press, 1989, 337
32 Baeuerlein E. Biomineralization.Weinheim: Wiley-VCH, 2000, 294
33 Mann S. Biomineralization. Oxford: Oxford University Press, 2001, 198
34 Baeuerlein E. Handbook of Biomineralization. Biological Aspects and Structure Formation . Weinheim: Wiley-VCH, 2007, 440
35 Arias J L, Fernandez M S. Biomineralization: From Paleontology to Materials Science. Santiago, Chile: Editorial Universitaria, 2007, 534
36 Dorozhkin S V, Epple M. Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition , 2002, 41(17): 3130–3146
37 LeGeros R Z. In: Brown P W, Constantz B, eds. Hydroxyapatite and Related Materials. Boca Raton, FL: CRC, 1994, 3–28
38 Rueger J M. Bone substitution materials. Current status and prospects. Der Orthopade , 1998, 27(2): 72–79
39 LeGeros R Z, LeGeros J P. In: Schnettler R, Markgraf E, eds. Knochenersatzmaterialien und wachstumsfaktoren . Stuttgart: Thieme, 1997, 180 (in German)
40 Choi J S, K?ller M, Müller D, . Verbesserung der biokompatibilit?t von Ni-Ti-Formged?chtnislegierungen (“Nitinol”) durch beschichtung mit calciumphosphaten aus l?sung. Biomedizinische Technik , 2001, 46(s1): 226–227 (in German)
41 Ambard A J, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. Journal of Prosthodontics , 2006, 15(5): 321–328
42 Saha S, Pal S. Mechanical properties of bone cement: a review. Journal of Biomedical Materials Research , 1984, 18(4): 435–462
43 Gisep A, Wieling R, Bohner M, . Resorption patterns of calcium-phosphate cements in bone. Journal of Biomedical Materials Research Part A , 2003, 66A(3): 532–540
44 Morejón-Alonso L, Ferreira O J B, Carrodeguas R G, . Bioactive composite bone cement based on α-tricalcium phosphate/tricalcium silicate. Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2012, 100B(1): 94–102
45 Brunner T J, Grass R N, Bohner M, . Effect of particle size, crystal phase and crystallinity on the reactivity of tricalcium phosphate cements for bone reconstruction. Journal of Materials Chemistry , 2007, 17(38): 4072–4078
46 Henslee A M, Gwak D-H, Mikos A G, . Development of a biodegradable bone cement for craniofacial applications. Journal of Biomedical Materials Research Part A , 2012, 100A(9): 2252–2259
47 James R, Deng M, Laurencin C T, . Nanocomposites and bone regeneration. Frontier of Materials Science , 2011, 5(4): 342–357
48 Cui F Z, Wen H B, Su X W, . Microstructures of external periosteal callus of repaired femoral fracture in children. Journal of Structural Biology , 1996, 117(3): 204–208
49 Zhang W, Liao S S, Cui F Z. Hierarchical self-assembly of nano-fibrils in mineralized collagen. Chemistry of Materials , 2003, 15(16): 3221–3226
50 Zhang W, Huang Z L, Liao S S, . Nucleation sites of calcium phosphate crystals during collagen mineralization. Journal of the American Ceramic Society , 2003, 86(6): 1052–1054
51 Cui F-Z, Li Y, Ge J. Self-assembly of mineralized collagen composites. Materials Science and Engineering R: Reports , 2007, 57(1–6): 1–27
52 Cai Y, Liu Y, Yan W, . Role of hydroxyapatite nanoparticle size in bone cell proliferation. Journal of Materials Chemistry , 2007, 17(36): 3780–3787
53 Bako? D, Soldán M, Hernández-Fuentes I. Hydroxyapatite–collagen–hyaluronic acid composite. Biomaterials , 1999, 20(2): 191–195
54 Solchaga L A, Dennis J E, Goldberg V M, . Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage. Journal of Orthopaedic Research , 1999, 17(2): 205–213
55 Aebli N, Stich H, Schawalder P, . Effects of bone morphogenetic protein-2 and hyaluronic acid on the osseointegration of hydroxyapatite-coated implants: an experimental study in sheep. Journal of Biomedical Materials Research Part A , 2005, 73A(3): 295–302
56 Yoshikawa M, Tsuji N, Toda T, . Osteogenic effect of hyaluronic acid sodium salt in the pores of a hydroxyapatite scaffold. Materials Science and Engineering C , 2007, 27(2): 220–226
57 Ishikawa Y, Komotori J, Senna M. Properties of hydroxyapatite-hyaluronic acid nano-composite sol and its interaction with natural bones and collagen fibers. Current Nanoscience , 2006, 2(3): 191–196
58 Shen H, Tan J, Saltzman W M. Surface-mediated gene transfer from nanocomposites of controlled texture. Nature Materials , 2004, 3(8): 569–574
59 Maitra A. Calcium phosphate nanoparticles: second-generation nonviral vectors in gene therapy. Expert Review of Molecular Diagnostics , 2005, 5(6): 893–905
60 Sokolova V, Epple M. Inorganic nanoparticles as carriers of nucleic acids into cells. Angewandte Chemie International Edition , 2008, 47(8): 1382–1395
61 Sokolova V V, Radtke I, Heumann R, . Effective transfection of cells with multi-shell calcium phosphate–DNA nanoparticles. Biomaterials , 2006, 27(16): 3147–3153
62 Chowdhury E H, Kutsuzawa K, Akaike T. Designing smart nano-apatite composites: the emerging era of non-viral gene delivery. Gene Therapy & Molecular Biology , 2005, 9: 301–315
63 Sokolova V, Kovtun A, Prymak O, . Functionalisation of calcium phosphate nanoparticles by oligonucleotides and their application for gene silencing. Journal of Materials Chemistry , 2007, 17(8): 721–727
64 Pedraza C E, Bassett D C, McKee M D, . The importance of particle size and DNA condensation salt for calcium phosphate nanoparticle transfection. Biomaterials , 2008, 29(23): 3384–3392
65 Kakizawa Y, Miyata K, Furukawa S, . Size-controlled formation of a calcium phosphate-based organic–inorganic hybrid vector for gene delivery using poly(ethylene glycol)-block-poly(aspartic acid). Advanced Materials , 2004, 16(8): 699–702
66 Welzel T, Radtke I, Meyer-Zaika W, . Transfection of cells with custom-made calcium phosphate nanoparticles coated with DNA. Journal of Materials Chemistry , 2004, 14(14): 2213–2217
67 Donners J J J M, Nolte R J M, Sommerdijk N A J M. Dendrimer-based hydroxyapatite composites with remarkable materials. Advanced Materials , 2003, 15(4): 313–316
68 Shkilnyy A, Friedrich A, Tiersch B, . Poly(ethylene imine)-controlled calcium phosphate mineralization. Langmuir , 2008, 24(5): 2102–2109
69 Schmidt H T, Gray B L, Wingert P A, . Assembly of aqueous-cored calcium phosphate nanoparticles for drug deli-very. Chemistry of Materials , 2004, 16(24): 4942–4947
70 Sauer M, Haefele T, Graff A, . Ion-carrier controlled precipitation of calcium phosphate in giant ABA triblock copolymer vesicles. Chemical Communications , 2001, 23(23): 2452–2453
71 Sugawara A, Yamane S, Akiyoshi K. Nanogel-templated mineralization: polymer-calcium phosphate hybrid nanomaterials. Macromolecular Rapid Communications , 2006, 27(6): 441–446
72 Perkin K K, Turner J L, Wooley K L, . Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages. Nano Letters , 2005, 5(7): 1457–1461
73 Ethirajan A, Ziener U, Chuvilin A, . Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Advanced Functional Materials , 2008, 18(15): 2221–2227
74 Wang X, Zhuang J, Peng Q, . Liquid-solid-solution synthesis of biomedical hydroxyapatite nanorods. Advanced Materials , 2006, 18(15): 2031–2034
75 Antonietti M, Breulmann M, G?ltner C G, . Inorganic/organic mesostructures with complex architectures: precipitation of calcium phosphate in the presence of double-hydrophilic block copolymers. Chemistry- A European Journal , 1998, 4(12): 2493–2500
76 Song R Q, Xu A W, Antonietti M, . Calcite crystals with platonic shapes and minimal surfaces. Angewandte Chemie International Edition , 2009, 48(2): 395–399
78 Furth G, Knierim R, Buss V, . Binding of bivalent cations by hyaluronate in aqueous solution. International Journal of Biological Macromolecules , 2008, 42(1): 33–40
79 Scott J E, Heatley F. Hyaluronan forms specific stable tertiary structures in aqueous solution: a 13C NMR study. Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(9): 4850–4855
80 Lippmann F. Sedimentary Carbonate Minerals. Berlin: Springer-Verlag, 1973
81 Orme C A, Noy A, Wierzbicki A, . Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature , 2001, 411(6839): 775–779
82 Fu G, Qiu S R, Orme C A, . Acceleration of calcite kinetics by abalone nacre proteins. Advanced Materials , 2005, 17(22): 2678–2683
83 Kulp E A, Switzer J A. Electrochemical biomineralization: the deposition of calcite with chiral morphologies. Journal of the American Chemical Society , 2007, 129(49): 15120–15121
84 Huang Y X, Buder J, Cardoso-Gil R, . Shape development and structure of a complex (otoconia-like?) calcite–gelatine composite. Angewandte Chemie International Edition , 2008, 47(43): 8280–8284
85 Weissbuch I, Addadi L, Leiserowitz L. Molecular recognition at crystal interfaces. Science , 1991, 253(5020): 637–645
86 Wolf S E, Loges N, Mathiasch B, . Phase selection of calcium carbonate through the chirality of adsorbed amino acids. Angewandte Chemie International Edition , 2007, 46(29): 5618–5623
87 Lahav M, Leiserowitz L. Comments on “Mirror symmtry breaking” of the centrosymmetric CaCO3 crystals with amino acids. Angewandte Chemie International Edition , 2008, 47(20): 3680–3682
88 Loges N, Wolf S E, Panth?fer M, . Reply to “Mirror symmetry breaking” of the centrosymmetric CaCO3 crystals with amino acids. Angewandte Chemie International Edition , 2008, 47(20): 3683–3686
89 Wang T X, C?lfen H, Antonietti M. Nonclassical crystallization: mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive. Journal of the American Chemical Society , 2005, 127(10): 3246–3247
90 Wang T X, Antonietti M, C?lfen H. Calcite mesocrystals: “morphing” crystals by a polyelectrolyte. Chemistry- A European Journal , 2006, 12(22): 5722–5730
91 Pastero L, Aquilano D. CaCO3 (calcite)/Li2CO3 (zabuyelite) anomalous mixed crystals. Sector zoning and growth mecha-nisms. Crystal Growth & Design , 2008, 8(9): 3451–3460
92 Rajam S, Mann S. Selective stabilization of the (001) face of calcite in the presence of lithium. Journal of the Chemical Society: Chemical Communications , 1990, 24(24): 1789–1791
93 Pastero L, Costa E, Bruno M, . Morphology of calcite (CaCO3) crystals growing from aqueous solutions in the presence of Li+ ions. Surface behavior of the {0001} form. Crystal Growth & Design , 2004, 4(3): 485–490
94 Arias J L, Neira-Carrillo A, Arias J I, . Sulfated polymers in biological mineralization: a plausible source for bio-inspired engineering. Journal of Materials Chemistry , 2004, 14(14): 2154–2160
95 Arias J L, Fernández M S. Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chemical Reviews , 2008, 108(11): 4475–4482
96 Chen Z H, Chen J Z, Li X D, . Unpublished work
97 Yu H, Sheikholeslami R, Doherty W O S. The effects of silica and sugar on the crystallographic and morphological properties of calcium oxalate. Journal of Crystal Growth , 2004, 265(3–4): 592–603
98 Grases F, García-Ferragut L, S?hnel O, . Study on calcium oxalate monohydrate renal uroliths I. Qualitative properties. Scandinavian Journal of Urology and Nephrology , 1995, 29(4): 413–419
99 Demadis K D. In: Shah R K, ed. Compact Heat Exchangers and Enhancement Technology for the Process Industries . New York: Begell House Inc., 2003, 483–490
100 Ak?n B, ?ner M, Bayram Y, . Effects of carboxylate-modified, “green” inulin biopolymers on the crystal growth of calcium oxalate. Crystal Growth & Design , 2008, 8(6): 1997–2005
101 Millan A. Crystal growth shape of whewellite polymorphs: Influence of structure distortions on crystal shape. Crystal Growth & Design , 2001, 1(3): 245–254
102 Wesson J A, Worcester E M, Kleinman J G. Role of anionic proteins in kidney stone formation: interaction between model anionic polypeptides and calcium oxalate crystals. Journal of Urology , 2000, 163(4): 1343–1348
103 Joshi V S, Parekh B B, Joshi M J, . Herbal extracts of tribulus terrestris and bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro. Journal of Crystal Growth , 2005, 275(1–2): e1403–e1408
104 Li X, Zhang D, Lynch-Holm V J, . Isolation of a crystal matrix protein associated with calcium oxalate precipitation in vacuoles of specialized cells. Plant Physiology , 2003, 133(2): 549–559
105 Backov R, Lee C M, Khan S R, . Calcium oxalate monohydrate precipitation at phosphatidylglycerol Langmuir monolayers. Langmuir , 2000, 16(14): 6013–6019
106 Ouyang J M, Deng S P, Zhou N, . Effect of tartrates with various counterions on the precipitation of calcium oxalate in vesicle solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2005, 256(1): 21–27
107 Skrti? D, Filipovi?-Vincekovi? N, Babi?-Ivan?i? V, . Influence of sodium cholate on the crystallization of calcium oxalate. Journal of Crystal Growth , 1993, 133(3–4): 189–195
108 Weaver M L, Qiu S R, Hoyer J R, . Inhibition of calcium oxalate monohydrate growth by citrate and the effect of the background electrolyte. Journal of Crystal Growth , 2007, 306(1): 135–145
109 Jung T, Sheng X, Choi C K, . Probing crystallization of calcium oxalate monohydrate and the role of macromolecule additives with in situ atomic force microscopy. Langmuir , 2004, 20(20): 8587–8596
110 Guo S, Ward M D, Wesson J A. Direct visualization of calcium oxalate monohydrate crystallization and dissolution with atomic force microscopy and the role of polymeric additives. Langmuir , 2002, 18(11): 4284–4291
111 Akyol E, Bozkurt A, ?ner M. The effects of polyelectrolytes on the inhibition and aggregation of calcium oxalate crystallization. Polymers for Advanced Technologies , 2006, 17(1): 58–65
112 Akyol E, ?ner M. Inhibition of calcium oxalate monohydrate crystal growth using polyelectrolytes. Journal of Crystal Growth , 2007, 307(1): 137–144
113 Wang L, Qiu S R, Zachowicz W, . Modulation of calcium oxalate crystallization by linear aspartic acid-rich peptides. Langmuir , 2006, 22(17): 7279–7285
114 Wesson J A, Worcester E M, Wiessner J H, . Control of calcium oxalate crystal structure and cell adherence by urinary macromolecules. Kidney International , 1998, 53(4): 952–957
115 Sallis J D, Lumley M F. On the possible role of glycosaminoglycans as natural inhibitors of calcium oxalate stones. Investigative Urology , 1979, 16(4): 296–299
116 Nishio S, Abe Y, Wakatsuki A, . Matrix glycosaminoglycan in urinary stones. Journal of Urology , 1985, 134(3): 503–505
117 Angell A H, Resnick M I. Surface interaction between glycosaminoglycans and calcium oxalate. Journal of Urology , 1989, 141(5): 1255–1258
118 Asselman M, Verhulst A, De Broe M E, . Calcium oxalate crystal adherence to hyaluronan-, osteopontin-, and CD44-expressing injured/regenerating tubular epithelial cells in rat kidneys. Journal of the American Society of Nephrology , 2003, 14(12): 3155–3166
119 Coe F L, Evan A P, Worcester E M, . Three pathways for human kidney stone formation. Urological Research , 2010, 38(3): 147–160
120 Verkoelen C F. Crystal retention in renal stone disease: a crucial role for the glycosaminoglycan hyaluronan? Journal of the American Society of Nephrology , 2006, 17(6): 1673–1687
121 Asselman M, Williams J C, Evan A P, . Hyaluronan and stone disease. AIP Conference Proceedings , 2008, 1049: 133–144
122 Jonassen J A, Cao L C, Honeyman T, . Intracellular events in the initiation of calcium oxalate stones. Nephron Experimental Nephrology , 2004, 98(2): e61–e64
123 Ratkalkar V N, Kleinman J G. Mechanisms of stone formation. Clinical Reviews in Bone and Mineral Metabolism , 2011, 9(3–4): 187–197
124 Khan S R, Kok D J. Modulators of urinary stone formation. Frontiers in Bioscience , 2004, 9(1–3): 1450–1482
125 Khan S R. Role of renal epithelial cells in the initiation of calcium oxalate stones. Nephron Experimental Nephrology , 2004, 98(2): e55–e60
126 Basavaraj D R, Biyani C S, Browning A J, . The role of urinary kidney stone inhibitors and promoters in the pathogenesis of calcium containing renal stones. EAU-EBU Update Series , 2007, 5(3): 126–136
127 Schepers M S J, van der Boom B G, Romijn J C, . Urinary crystallization inhibitors do not prevent crystal binding. The Journal of Urology , 2002, 167(4): 1844–1847
128 Knepper M A, Saidel G M, Hascall V C, . Concentration of solutes in the renal inner medulla: interstitial hyaluronan as a mechano-osmotic transducer. American Journal of Physiology- Renal Physiology , 2003, 284(3): F433–F446
129 Hautmann R, Lehmann A, Komor S. Calcium and oxalate concentrations in human renal tissue: the key to the pathogenesis of stone formation? The Journal of Urology , 1980, 123(3): 317–319
130 Verkoelen C F, Van Der Boom B G, Romijn J C. Identification of hyaluronan as a crystal-binding molecule at the surface of migrating and proliferating MDCK cells. Kidney International , 2000, 58(3): 1045–1054
131 Niemeyer C M, Mirkin C A. Nanobiotechnology . Weinheim: Wiley-VCH, 2004
132 Lee H, Choi S H, Park T G. Direct visualization of hyaluronic acid polymer chain by self-assembled one-dimensional array of gold nanoparticles. Macromolecules , 2006, 39(1): 23–25
133 Jeong Y I, Kim S T, Jin S G, . Cisplatin-incorporated hyaluronic acid nanoparticles based on ion-complex formation. Journal of Pharmaceutical Sciences , 2008, 97(3): 1268–1276
134 Kumar A, Sahoo B, Montpetit A, . Development of hyaluronic acid–Fe2O3 hybrid magnetic nanoparticles for targeted delivery of peptides. Nanomedicine: Nanotechnology, Biology and Medicine , 2007, 3(2): 132–137
135 Lee Y, Lee H, Kim Y B, . Bioinspired surface immobilization of hyaluronic acid on monodisperse magnetite nanocrystals for targeted cancer imaging. Advanced Materials , 2008, 20(21): 4154–4157
136 Laroui H, Grossin L, Léonard M, . Hyaluronate-covered nanoparticles for the therapeutic targeting of cartilage. Biomacromolecules , 2007, 8(12): 3879–3885
137 Mendes R M, Silva G A B, Caliari M V, . Effects of single wall carbon nanotubes and its functionalization with sodium hyaluronate on bone repair. Life Sciences , 2010, 87(7–8): 215–222
138 Kim J, Park K, Hahn S K. Effect of hyaluronic acid molecular weight on the morphology of quantum dot-hyaluronic acid conjugates. International Journal of Biological Macromolecules , 2008, 42(1): 41–45
139 Bhang S H, Won N, Lee T J, . Hyaluronic acid-quantum dot conjugates for in vivo lymphatic vessel imaging. ACS Nano , 2009, 3(6): 1389–1398
140 Erathodiyil N, Ying J Y. Functionalization of inorganic nanoparticles for bioimaging applications. Accounts of Chemical Research , 2011, 44(10): 925–935
141 Cao M-R, Hou J, Zhang Q, . Preparation of hyaluronic acid-quantum dot conjugate and its application in tumor imaging. Chemical Journal of Chinese Universities , 2012, 33(03): 437–441
142 Stadlinger B, Hintze V, Bierbaum S, . Biological functionalization of dental implants with collagen and glycosaminoglycans — A comparative study. Journal of Biomedical Materials Research Part B: Applied Biomaterials , 2012, 100B(2): 331–341
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed