Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2014, Vol. 8 Issue (2): 185-192   https://doi.org/10.1007/s11706-014-0243-y
  本期目录
Simulation of epitaxial growth on convex substrate using phase field crystal method
Ying-Jun GAO1,2,*(),Li-Lin HUANG1,Qian-Qian DENG1,Kui LIN1,Chuang-Gao HUANG1,2
1. College of Physical Science and Engineering, Guangxi University, Nanning 530004, China
2. Ministry Key Laboratory for Non-Ferrous Metal and Featured Materials, Nanning 530004, China
 全文: PDF(1927 KB)   HTML
Abstract

Phase field crystal (PFC) model is employed to simulate the process of growth of epitaxial layer on plane-convex substrate with a lattice mismatch and a small inclination angle. The variation of the systematic free energy, the total atomic number of the epitaxial layer, and the effect of the curvature and the angle of the substrate are analyzed. The results show that when the surface of the substrate is plane, the free energy increases with the increase of the substrate inclination angle, and also the total atomic number of the epitaxial layer increases; while the surface of the substrate is convex, the free energy decreases with the increase of substrate angle and so also the total atomic number of the epitaxial layer decrease. This is the reason that the frontier of surface of epitaxial layer changes from the step bunching to the hill-and-valley facet structure with the increasing of the inclination angle of convex substrate. These results are in good agreement with the other method results.

Key wordsheteroepitaxy    phase field crystal (PFC)    convex substrate    atomic number
收稿日期: 2014-02-25      出版日期: 2014-06-24
Corresponding Author(s): Ying-Jun GAO   
 引用本文:   
. [J]. Frontiers of Materials Science, 2014, 8(2): 185-192.
Ying-Jun GAO,Li-Lin HUANG,Qian-Qian DENG,Kui LIN,Chuang-Gao HUANG. Simulation of epitaxial growth on convex substrate using phase field crystal method. Front. Mater. Sci., 2014, 8(2): 185-192.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-014-0243-y
https://academic.hep.com.cn/foms/CN/Y2014/V8/I2/185
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
1 Ni Y, He L H, Song J. Strain-driven instability of a single island and a hexagonal island array on solid substrates. Surface Science, 2004, 553(1–3): 189–197
2 Capper P, Mauk M, eds. Liquid Phase Epitaxy of Electronic, Optical and Optoelectronic Materials. West Sussex: Wiley, 2007, 16
3 Jung Y-C, Miura H, Ohtani K, . High-quality silicon/insulator heteroepitaxial structures formed by molecular beam epitaxy using Al2O3 and Si. Journal of Crystal Growth, 1999, 196(1): 88–96
4 Much F, Ahr M, Biehl M, . A kinetic Monte Carto method for the simulation of heteroepitaxial growth. Computer Physics Communications, 2002, 147(1–2): 226–229
5 Zhou N-G, Zhou L. Prevention of misfit dislocations by using nano pillar crystal array substrates. Acta Physica Sinica, 2008, 57(5): 3064–3070 (in Chinese)
6 Elder K R, Katakowski M, Haataja M, . Modeling elasticity in crystal growth. Physical Review Letters, 2002, 88(24): 245701 (4 pages)
7 Elder K R, Grant M. Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2004, 70(5): 051605 (18 pages)
8 Elder K R, Huang Z F, Provatas N. Amplitude expansion of the binary phase-field-crystal model. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2010, 81(1): 011602
9 Chaiken P M, Lubensky T C. Principles of Condensed Matter Physics. Cambridge, England: Cambridge University Press, 1995
10 Elder K R, Rossi G, Kanerva P, . Patterning of heteroepitaxial overlayers from nano to micron scales. Physical Review Letters, 2012, 108(22): 226102
11 Berry J, Elder K R, Grant M. Melting at dislocations and grain boundaries: A phase field crystal study. Physical Review B: Condensed Matter and Materials Physics, 2008, 77(22): 224114 (5 pages)
12 Wu K-A, Voorhees P W. Phase field crystal simulations of nanocrystalline grain growth in two dimensions. Acta Materialia, 2012, 60(1): 407–419
13 Berry J, Grant M, Elder K R. Diffusive atomistic dynamics of edge dislocations in two dimensions. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(3): 031609
14 Gao Y-J, Luo Z-R, Huang C-G, . Phase-field-crystal modeling for two-dimensional transformation from hexagonal to square structure. Acta Physica Sinica, 2013, 62(5): 050507 (10 pages) (in Chinese)
15 Gao Y J, Wang J F, Luo Z R, . Nano-twin structure simulation with phase field crystal method. Chinese Journal of Computational Physics, 2013, 30(4): 577–581 (in Chinese)
16 Gao Y J, Zhou W Q, Liu Y, . Phase field crystal modeling for nanocrystalline growth. Advanced Materials Research, 2013, 785–786: 512–516
17 Gao Y-J, Deng Q-Q, Quan S-L, . Phase field crystal simulation of grain boundary movement and dislocation reaction. Frontiers of Materials Science, 2014, 8(2) (in press)
18 Chen C, Chen Z, Zhang J, . Simulation of morphologyical evolution and crystallographic tilt in heteroepitaxial growth using phase-field crystal method. Acta Physica Sinica, 2012, 61(10): 108103 (6 pages) (in Chinese)
19 Yu Y M, Backofen R, Voigt A. Morphological instability of heteroepitaxial growth on vicinal substrates: A phase-field crystal study. Journal of Crystal Growth, 2011, 318(1): 18–22
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed