Garnet-like Li6.8La3Zr1.8Bi0.2O12 (LLZBO) + x mol.% Al2O3 (x = 0, 1.25, 2.50) lithium ionic electrolytes were prepared by conventional solid state reaction method under two different sintering temperatures of 1000°C and 1100°C. XPS, induced coupled plasma optical emission spectrometer (ICP-OES), XRD and AC impedance spectroscopy were applied to investigate the bismuth valance, lithium concentration, phase structure and lithium ionic conductivity, respectively. Electrical measurement demonstrated that ionic conductivity of Al-added LLZBO compounds could be obviously improved when the sample sintering temperature increased from 1000°C to 1100°C. The highest ionic conductivity 6.3×10−5 S/cm was obtained in the LLZBO−1.25%Al sample sintered at 1100°C, in consistent with the lowest activation energy 0.45 eV for the lithium ion migration. The mechanism related with good ionic conductivity in the Al-added LLZBO sample was attributed to the lattice distortion induced by the partial Al substitution at Zr sites, which is helpful to improve the migration ability of Li ions in lattice.
Thangadurai V, Narayanan S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chemical Society Reviews, 2014, 43(13): 4714–4727
2
Zhu J, Xu Z, Lu B G. Ultrafine nanoparticles decorated NiCo2O4 nanotubes as anode material for high-performance supercapacitor and lithium-ion battery applications. Nano Energy, 2014, 7: 114–123
3
Zhu J, Chen L B, Xu Z, Electrospinning preparation of ultra-long aligned nanofibers thin films for high performance fully flexible lithium-ion batteries. Nano Energy, 2015, 12: 339–346
4
Thangadurai V, Weppner W. Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12. Journal of Solid State Chemistry, 2006, 179(4): 974–984
5
Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angewandte Chemie International Edition, 2007, 46(41): 7778–7781
6
Thangadurai V, Kaack H, Weppner W. Novel fast lithium ion conduction in garnet-type Li5La3M2O12 (M=Nb, Ta). Journal of the American Ceramic Society, 2003, 86(3): 437–440
7
Awaka J, Kijima N, Hayakawa H, Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. Journal of Solid State Chemistry, 2009, 182(8): 2046–2052
8
Rangasamy E, Wolfenstine J, Sakamoto J. The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics, 2012, 206: 28–32
9
Hubaud A A, Schroeder D J, Key B, Low temperature stabilization of cubic (Li7−xAlx/3)La3Zr2O12: role of aluminum during formation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2013, 1(31): 8813–8818
10
Wang X P, Xia Y, Hu J, Phase transition and conductivity improvement of tetragonal fast lithium ionic electrolyte Li7La3Zr2O12. Solid State Ionics, 2013, 253: 137–142
11
Lee J M, Kim T, Baek S W, High lithium ion conductivity of Li7La3Zr2O12 synthesized by solid state reaction. Solid State Ionics, 2014, 258: 13–17
12
Ahn J H, Park S Y, Lee J M, Local impedance spectroscopic and microstructural analyses of Al-in-diffused Li7La3Zr2O12. Journal of Power Sources, 2014, 254: 287–292
13
Düvel A, Kuhn A, Robben L, Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. Journal of Physical Chemistry C, 2012, 116(29): 15192–15202
14
Raskovalov A A, Il’ina E A, Antonov B D. Structure and transport properties of Li7La3Zr2−0.75xAlxO12 superionic solid electrolytes. Journal of Power Sources, 2013, 238: 48–52
15
He L X, Yoo H I. Effect of B-site ion (M) substitution on the ionic conductivity of (Li3xLa2/3−x)1+y/2(MyTi1−y)O3 (M=Al, Cr). Electrochimica Acta, 2003, 48(10): 1357–1366
16
Kulkarni G U, Vijayakrishnan V, Rao G R, State of bismuth in BaBiO3 and BaBi1−xPbxO3: Bi 4f photoemission and Bi L3 absorption spectroscopic studies. Applied Physics Letters, 1990, 57(17): 1823–1824
17
Xie H, Alonso J A, Li T, Lithium distribution in aluminum-free cubic Li7La3Zr2O12. Chemistry of Materials, 2011, 23(16): 3587–3589
18
Boukamp B A. Equivalent Circuit, Users Manual. 2nd ed. The Netherlands: University of Twente, 1989, 1