Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2016, Vol. 10 Issue (1): 31-37   https://doi.org/10.1007/s11706-016-0328-x
  本期目录
Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation
Xing-an JIANG,Xiang-ping JIANG(),Chao CHEN,Na TU,Yun-jing CHEN,Ban-chao ZHANG
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
 全文: PDF(860 KB)   HTML
Abstract

Na0.5Bi4.5--xEuxTi4O15 (NBT--xEu3+) ceramics with x=0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30 and 0.40 were prepared by conventional ceramics processing. NBT--0.25Eu3+ ceramics show the strongest red and orange emissions corresponding to the 5D07F2 (617 nm) and 5D07F1 (596 nm) transitions, respectively. The strongest excitation band around 465 nm matches well with the emission wavelength of commercial InGaN-based blue LED chip, indicating that Eu3+-doped NBT ceramics may be used as potential environmental friendly red-orange phosphor for W-LEDs application. As an inherent ferroelectric and piezoelectric material, the electrical properties of this potentially multifunctional electro-optical material have been also studied. The introduction of Eu3+ distinctly increased the Curie temperature (TC) of NBT--xEu3+ ceramics from 640°C to 711°C as x ranges from 0 to 0.40. For higher temperature applications, the electrical conductivity was also investigated. The conduction of charge carriers in high-temperature range originates from the conducting electrons from the ionization of oxygen vacancies. High TC and low tanδ makes Eu3+-doped NBT ceramic also suitable for high temperature piezoelectric sensor applications and electro-optical integration.

Key wordsAurivillius bismuth layered structure    photoluminescence    electrical properties    multifunctional materials
收稿日期: 2015-10-29      出版日期: 2016-01-15
Corresponding Author(s): Xiang-ping JIANG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2016, 10(1): 31-37.
Xing-an JIANG,Xiang-ping JIANG,Chao CHEN,Na TU,Yun-jing CHEN,Ban-chao ZHANG. Photoluminescence and electrical properties of Eu3+-doped Na0.5Bi4.5Ti4O15-based ferroelectrics under blue light excitation. Front. Mater. Sci., 2016, 10(1): 31-37.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-016-0328-x
https://academic.hep.com.cn/foms/CN/Y2016/V10/I1/31
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
ACalternating current
BLSFbismuth layered structure ferroelectric
CIECommission Internationale de I’Eclairage
CNcoordination number
CRIcolor rendering index
DCdirectcurrent
DPTdiffused phase transition
LEDlight-emitting diode
NBTNa0.5Bi4.5Ti4O15
PLphotoluminescence
PLEphotoluminescence excitation
Rerare earth
W-LEDwhite light-emitting diode
XRDX-ray diffraction
Tab.1  
1 Kreisel  J, Alexe  M, Thomas  P A. A photoferroelectric material is more than the sum of its parts. Nature Materials, 2012, 11(4): 260
2 Hwang  S C, Lynch  C S, McMeeking  R M. Ferroelectric/ferroelastic interactions and a polarization switching model. Acta Metallurgica et Materialia, 1995, 43(5): 2073–2084
3 Spaldin  N A, Fiebig  M. The renaissance of magnetoelectric multiferroics. Science, 2005, 309(5733): 391–392
4 Lu  H, Bark  C W, Ojos  D E, . Mechanical writing of ferroelectric polarization. Science, 2012, 336(6077): 59–61
5 Wang  X S, Xu  C N, Yamada  H, . Elecro-mechano-optical conversions in Pr3+-doped BaTiO3–CaTiO3 ceramics. Advanced Materials, 2005, 17(10): 1254–1258
6 Jaffe  H, Berlincourt  D A. Piezoelectric transducer materials. Proceedings of the IEEE, 1965, 53(10): 1372–1386
7 Aurivillius  B. Mixed bismuth oxides with layer lattices. Arkiv för Kemi, 1949, 1: 463–480
8 Park  B H, Kang  B S, Bu  S D, . Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754): 682–684
9 Peng  D F, Wang  X S, Xu  C N, . Bright upconversion emission, increased Tc, enhanced ferroelectric and piezoelectric properties in Er-doped CaBi4Ti4O15 multifunctional ferroelectric oxides. Journal of the American Ceramic Society, 2013, 96(1): 184–190
10 Bokolia  R, Thakur  O P, Rai  V K, . Dielectric, ferroelectric and photoluminescence properties of Er3+-doped Bi4Ti3O12 ferroelectric ceramics. Ceramics International, 2015, 41(4): 6055–6066
11 Chen  H Z, Yang  B, Sun  Y, . Investigation on upconversion photoluminescence of Bi3TiNbO9:Er3+:Yb3+ thin films. Journal of Luminescence, 2011, 131(12): 2574–2578
12 Ma  Q, Zhou  Y Y, Lu  M K, . Synthesis and luminescence of pure and Eu3+-activated Aurivillius-type Bi3TiNbO9 nanophosphors. Materials Chemistry and Physics, 2009, 116(2–3): 315–318
13 Volanti  D P, Rosa  L V, Paris  E C, . The role of the Eu3+ ions in structure and photoluminescence properties of SrBi2Nb2O9 powders. Optical Materials, 2009, 31(6): 995–999
14 Wei  T, Zhao  C Z, Zhou  Q J, . Bright green upconversion emission and enhanced ferroelectric polarization in Sr1−1.5xErxBi2Nb2O9. Optical Materials, 2014, 36(7): 1209–1212
15 Li  J L, Deng  C Y, Cui  R R. Photoluminescence properties of CaBi2Ta2O9:RE3+ (RE= Sm, Tb, and Tm) phosphors. Optics Communications, 2014, 326: 6–9
16 Cui  R R, Deng  C Y, Gong  X Y, . Luminescent performance of rare earths doped CaBi2Ta2O9 phosphor. Journal of Rare Earths, 2013, 31(6): 546–550
17 Sailaja  S, Reddy  B S. Synthesis, structural and photoluminescence properties of RE3+ (RE= Pr, Tm): (MgCa)2Bi4Ti5O20 ceramics. Ferroelectrics (Letters Section), 2011, 38(4–6): 94–100
18 Sun  H Q, Zhang  Q W, Wang  X S, . Bi0.5Na0.5TiO3:Eu3+: An intense blue converting red phosphor. Materials Letters, 2014, 131: 164–166
19 Francis  L T, Rao  P P, Thomas  M, . New orange-red emitting phosphor La3NbO7:Eu3+ under blue excitation. Materials Letters, 2012, 81: 142–144
20 Wei  T, Zhao  C Z, Li  C P, . Photoluminescence and ferroelectric properties in Eu-doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectric ceramics. Journal of Alloys and Compounds, 2013, 577: 728–733
21 Chen  D Q, Yu  Y L, Huang  P, . Color-tunable luminescence of Eu3+ in LaF3 embedded nanocomposite for light emitting diode. Acta Materialia, 2010, 58(8): 3035–3041
22 Neeraj  S, Kijima  N, Cheetham  A K. Novel red phosphors for solid state lighting; the system BixLn1−xVO4; Eu3+/Sm3+ (Ln= Y, Gd). Solid State Communications, 2004, 131(1): 65–69
23 Chan  T S, Kang  C C, Liu  R S, . Combinatorial study of the optimization of Y2O3:Bi,Eu red phosphors. Journal of Combinatorial Chemistry, 2007, 9(3): 343–346
24 Kuo  T W, Huang  C H, Chen  T M. Novel yellowish-orange Sr8Al12O24S2:Eu2+ phosphor for application in blue light-emitting diode based white LED. Optics Express, 2010, 18(S2): A231–A236
25 Ruan  K B, Wu  C H, Zhou  H, . Optical characteristics of Bi4−xEuxTi3O12 ferroelectric thin films on fused silica substrates. Journal of Electroceramics, 2012, 29(1): 37–41
26 Cui  R R, Deng  C Y, Gong  X Y, . Luminescence properties of Eu3+ doped CaBi2Ta2O9 bismuth layered-structure ferroelectrics. Materials Research Bulletin, 2013, 48(10): 4301–4306
27 Villafuerte-Castrejón  M E, Camacho-Alanís  F, González  F, . Luminescence and structural study of Bi4−xEuxTi3O12 solid solution. Journal of the European Ceramic Society, 2007, 27(2–3): 545–549
28 Ofelt  G S. Intensities of crystal spectra of rare-earth ions. Journal of Chemical Physics, 1962, 37(3): 511
29 Shimakawa  Y, Kubo  Y, Nakagawa  Y, . Crystal structure and ferroelectric properties of ABi2Ta2O9 (A= Ca, Sr, and Ba). Physical Review B: Condensed Matter and Materials Physics, 2000, 61(10): 6559–6564
30 Kennedy  B J, Zhou  Q D, Ismunandar, . Cation disorder and phase transitions in the four-layer ferroelectric Aurivillius phases ABi4Ti4O15 (A= Ca, Sr, Ba, Pb). Journal of Solid State Chemistry, 2008, 181(6): 1377–1386
31 Du  H L, Shi  X. Dielectric and piezoelectric properties of barium-modified Aurivillius-type Na0.5Bi4.5Ti4O15. Journal of Physics and Chemistry of Solids, 2011, 72(11): 1279–1283
32 Ang  C, Yu  Z, Cross  L E. Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi:SrTiO3. Physical Review B: Condensed Matter and Materials Physics, 2000, 62(1): 228–236
33 Dash  U, Sahoo  S, Chaudhuri  P, Electrical properties of bulk and nano Li2TiO3 ceramics: A comparative study. Journal of Advanced Ceramics, 2014, 3(2): 89–97
34 Rehman  F, Li  J B, Dou  Y K, . Dielectric relaxations and electrical properties of Aurivillius Bi3.5La0.5Ti2Fe0.5Nb0.5O12 Ceramics. Journal of Alloys and compounds, 2016, 654: 315–320
35 Ehara  S, Muramatsu  K, Shimazu  M, . Dielectric properties of Bi4Ti3O12 below the Curie temperature. Japanese Journal of Applied Physics, 1981, 20(5): 877–881
36 Zhou  Z Y, Dong  X L, Yan  H X, . Doping effects on the electrical conductivity of bismuth layered Bi3TiNbO9-based ceramics. Journal of Applied Physics, 2006, 100(4): 044112
37 Shi  K, Peng  L, Li  M J, . Structural distortion, phonon behavior and electronic transition of Aurivillius layered ferroelectric CaBi2Nb2−xWxO9 ceramics. Journal of Alloys and Compounds, 2015, 653: 168–174
38 Rafiq  M A, Rafiq  M N, Saravanan  K V. Dielectric and impedance spectroscopic studies of lead-free barium–calcium–zirconium–titanium oxide ceramics. Ceramics International, 2015, 41(9): 11436–11444
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed