Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2016, Vol. 10 Issue (3): 238-259   https://doi.org/10.1007/s11706-016-0344-x
  本期目录
A review on biodegradable materials for cardiovascular stent application
Li-Da HOU1,Zhen LI1,2,Yu PAN1,MuhammadIqbal SABIR1,Yu-Feng ZHENG1,3,*(),Li LI1,2
1. Center for Biomedical Materials and Engineering, Harbin Engineering University, Harbin 150001, China
2. Institute of Materials Processing and Intelligent Manufacturing, Harbin Engineering University, Harbin 150001, China
3. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
 全文: PDF(343 KB)   HTML
Abstract

A stent is a medical device designed to serve as a temporary or permanent internal scaffold to maintain or increase the lumen of a body conduit. The researchers and engineers diverted to investigate biodegradable materials due to the limitation of metallic materials in stent application such as stent restenosis which requires prolonged anti platelet therapy, often result in smaller lumen after implantation and obstruct re-stenting treatments. Biomedical implants with temporary function for the vascular intervention are extensively studied in recent years. The rationale for biodegradable stent is to provide the support for the vessel in predicted period of time and then degrading into biocompatible constituent. The degradation of stent makes the re-stenting possible after several months and also ameliorates the vessel wall quality. The present article focuses on the biodegradable materials for the cardiovascular stent. The objective of this review is to describe the possible biodegradable materials for stent and their properties such as design criteria, degradation behavior, drawbacks and advantages with their recent clinical and preclinical trials.

Key wordsbiodegradable materials    magnesium alloy    polymers    biodegradable stent    cardiovascular stent
收稿日期: 2016-04-01      出版日期: 2016-08-08
Corresponding Author(s): Yu-Feng ZHENG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2016, 10(3): 238-259.
Li-Da HOU,Zhen LI,Yu PAN,MuhammadIqbal SABIR,Yu-Feng ZHENG,Li LI. A review on biodegradable materials for cardiovascular stent application. Front. Mater. Sci., 2016, 10(3): 238-259.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-016-0344-x
https://academic.hep.com.cn/foms/CN/Y2016/V10/I3/238
Metal Composition Yield strength /MPa Tensile strength /MPa Elastic modulus /GPa Elongation /%
316L stainless steel (annealed) 17Cr, 12Ni, 2.5Mo<0.03C, balance. Fe 550 260 193 50
Tantalum pure (commercially) 205 165 185 40
Titanium Ti6Al4V 795 860 110 10
Nitinol 55Ni–45Ti Aust. 130 Aust. 195, Mart. 70–140 Aust. 83, Mart. 28–41 annealed 125
Cobalt–chromium 40Co, 20Cr, 7Mo, 15.5Ni, 2Mn, 1Be, 0.15C, balance. Fe 1020 690 190 >10
Platinum (annealed) 99.96% 15–165 164 30–40
Pure iron 99.9% 120–50 180–210 211
Mg alloy (WE43) Y(4.11)Nb(2.28)Zr(0.45)Gd(0.19) 162 250 45 17
Tab.1  
Categories Types
Materials Balloon expandable stents

stainless steel 316L (vast majority)–tantalummartensitic nitinol, platinum iridiumpolymers, niobium alloy, cobalt alloy, magnesium

Self-expanding stents

“superelastic”, nickel–titanium, nitinol (majority)cobalt alloy, full hard (stainless steel)

Form Wire

Wallstent (cobalt alloy)bridge, S7, S660 (stainless steel, welded rings)Angiostent (platinum iridium), Strecker (tantalum)expander (nitinol)

Tube

vast majority

Sheet

NIR, ZR1, GRII (stainless steel), EndoTex (nitinol)

Ribbon

horizon prostatic (nitinol)EndoCoil, Esophacoil (nitinol)

Fabrication Laser cutting

vast majority

Photochemical etching

NIR, nitinol sheetcoiled nitinol framework, ePTFE covering

Braiding

Wallstent (cobalt alloy)

Knitting

Strecker (tantalum)

Vapor deposition
Water jet

SCS, SCS-Z stent

Geometry-slotted tube/coil Helical spiral

periodic peak to peak connectionsno/minimal connectionsaxial spine, integral with graft

Woven

braided, knitted

Individual rings
Sequential rings Open cells

peak-valley connections, peak-peak connectionsmid-struts connections, hybrids, other

Closed cells

regular peak-peak connection, combined connectornon-flex connector, flex connector, hybrid

Coil
Dependencies Covering

coiled nitinol framework, WallGraft; ePTFE covering

Radiopaque markers

tabs: tantalum end, gold end, platinum within strut; sleeve: gold, platinum; welded: tantalum

Radiopaque coating

gold, silicon carbide over gold

Biocompatibility coatings

tantalum coating, phosphorylcholine, carbon coating, silicon carbide

Drug eluting coating

rapamicyne, paclitaxel, sirolimus

Tab.2  
Fig.1  
Stent Manufacturer Strut material Drug used Absorption time /month Stent radio-opacity Crossing profile /mm Strut thickness /μm Radial support /month Status Refs.
Igaki-Tamai Kyoto Medical Planning Co. poly-L-lactic acid Nil 24 gold markers Covered sheath≥8–F 170 6 CE (European certification) 2007 [34]
BVS 1.0 Abbott Vascular poly-L-lactide everolimus 24 Pt markers 1.4 156 CE [35]
BVS 1.1 Abbott Vascular poly-L-lactide everolimus 24 Pt markers 1.4 156 3 CE 2011 [3637]
REVA Generation I REVA Medical Inc. (RMI) tyrosine-derived polycarbonate paclitaxel 36 covalently bound iodine 1.7 100 3–6 RESORB (FIM) [35]
REVA Generation II REVA Medical Inc. (RMI) tyrosine-derived polycarbonate sirolimus 36 covalently bound iodine 1.5 114–228 3–6 FIM (first in man) [38]
IDEAL Generation I Bioabsorbable Therapeutics (BTI) polymer+ salicylate sirolimus salicylate 6 Nil 2.0 200 3 clinical trials [35]
IDEAL Generation II Bioabsorbable Therapeutics (BTI) polymer+ salicylate sirolimus salicylate the stent is radiopaque 1.5 175 pre-clinical studies [36]
DESolve Elixir poly-L-lactide myolimus and novolimus radiopaque distal and proximal makers 1.5 150 on clinical trials [39]
ART 18AZ ART poly-DL-lactide Nil 18–24 Nil N/A 6-Fr-compatible 170 3–6 on clinical trials [4041]
Amaranth PLA Amaranth Medical poly-L-lactide Nil 12–24 Nil N/A 6-Fr-compatible 150–200 3–6 on clinical trials [4041]
Xinsorb Huaan Biotech poly-L-lactide sirolimus 2 radiopaque makers 150–170 on clinical trials [40,42]
AMS I Biotronik magnesium alloy Nil <4 Nil 1.2 165 <4 weeks has been treated in human and was modified [4345]
DREAMS I Biotronik magnesium alloy paclitaxel 6 Nil 120 <3 weeks under clinical stage [4546]
DREAMS II Biotronik magnesium alloy sirolimus radiopaque tantalum markers at both ends 150 under development [43,47]
Tab.3  
Biodegradable/bioresorbable polymers Crystallinity Tg /°C Tensile strength /MPa Tensile modulus /GPa td /months (aprox.) Degradation product
PGA semi-crystalline 35–40 60–80 5–7 6–12 GA
PGA-co-TMC semi-crystalline 60 2.4 12–15 GA
85:15 PDLLA/GA amorphous 50–55 40–50 2 6–12 D-LA & GA
PDLLA amorphous 55–60 40–50 2 12–15
PLLA semi-crystalline 60–65 60–70 3 36 LA
PCL semi-crystalline −65 to −60 20–25 0.4 36 CA
PDS −10 to 0 1.5 6–12 GA & LA
75/25 PDLGA amorphous 50–55 2.0 4–5 LA & GA
50/50 PDLGA amorphous 45–50 2.0 1–2
Polyorthoester 4–16 surface
PPF amorphous 2–30 2–3 >24 fumaric acid & PEG
Poly (3-hydroxybutyrate) semi-crystalline 20–43 bulk
Tyrosine-derived polycarbonate amorphous 53–81 50–70 1–2 very slow degradation (in vitro) amide & carbonate
Tab.4  
Stent types Expansion type Material Trials Refs.
Knitted-type balloon expanded PGA dog coronary artery [73]
Knitted-type balloon expanded PGA pig coronary artery [7475]
Diamond braided self-expanded PLLA dog femoral [76]
Film PCL/(D, L)PLA porcine carotid [77]
Tubular coil balloon PLLA–PCL rabbit carotid arteries [78]
Coil stent self-expanded PLLA human coronary [75]
Drug eluting thermal expanded PLLA pig coronary [76]
Tab.5  
Materials Yield strength /MPa Tensile strength /MPa Young modulus /GPa Density /(g·cm−3) Elongation /% Degradation rate /(mg·mm−2·yr−1) Refs.
AZ91E-F sand cast 97 165 45 1.81 2.5 1.38 [131,135]
AZ31 extruded 165–200 241–260 45 1.8 12–16 1.17 [135]
AZ31 sheet 255–290 45 15–21 [132]
AZ31 GAE 424 445 45 11.5 [135]
AE42 134 237 45 1.79 8–10 [136]
LAE442 148 247 45 18 0.39 [137]
W43-B 170 220 44 1.76 2
W43-extrude 198 277 44 1.84 17 1.56
W43 Tube 170 260 44 1.84 17
W43A-T6 162 250 45 1.84 2
AZ91+2Ca-GAE 427 452 1.81 5.4
Mg(0.4)Ca 210–240 1.8 5a) [138]
AZ91 A 150 230 45 1.81 3
Mg0.8Ca 428 2.28
AM60B-F 130 220 45 1.8 6
AM50A-F 123 247 45 1.77 12
Tab.6  
Fig.2  
Materials Yield strength /MPa Tensile strength /MPa Elongation /% Degradation rate /(mm·yr−1) Refs.
SS:316L annealed plate (ASTM, 2003) 190 490 40 [152]
Iron, annealed plate (Good fellow, 2007) 150 210 40 0.19 [6]
Fe35Mn alloy, powder sintering+ thermo mechanical treatment 235 550 32 0.44 [153]
FeMnPb alloy casted Fe, 10.2Mn, 0.92Pd, 0.12C 850 1450 11 [154]
Electroformed Fe 270 290 18 0.51 [155]
Fe (Mn, Co, Al, W, Sn, B, C, S): casted 100–220 200–360 12–23 0.10–0.17 [156]
Fe30Mn6Si (solution treated) 180 450 16 0.3 [157]
Fe (ECAP) 250–450 0.09–0.2 [158]
Tab.7  
Fig.3  
1 Arjomand H, Turi Z G, McCormick D, . Percutaneous coronary intervention: historical perspectives, current status, and future directions. American Heart Journal, 2003, 146(5): 787–796
2 Mueller R L, Sanborn T A. The history of interventional cardiology: cardiac catheterization, angioplasty, and related interventions. American Heart Journal, 1995, 129(1): 146–172
3 Boucher R A, Myler R K, Clark D A, . Coronary angiography and angioplasty. Catheterization and Cardiovascular Diagnosis, 1988, 14(4): 269–285
4 de la Cruz K I, Tsai P I, Cohn W E, . Revascularization treatment recommendations based on atherosclerotic disease distribution: coronary artery bypass grafting versus stenting. Current Atherosclerosis Reports, 2008, 10(5): 434–437
5 Mani G, Feldman M D, Patel D, . Coronary stents: a materials perspective. Biomaterials, 2007, 28(9): 1689–1710
6 Waksman R. Biodegradable stents: they do their job and disappear. The Journal of Invasive Cardiology, 2006, 18(2): 70–74
7 Bertrand O F, Sipehia R, Mongrain R, . Biocompatibility aspects of new stent technology. Journal of the American College of Cardiology, 1998, 32(3): 562–571
8 Roubin G S, Cannon A D, Agrawal S K, . Intracoronary stenting for acute and threatened closure complicating percutaneous transluminal coronary angioplasty. Circulation, 1992, 85(3): 916–927
9 Regar E, Sianos G, Serruys P W. Stent development and local drug delivery. British Medical Bulletin, 2001, 59(5): 227–248
10 Ashby D T, Dangas G, Mehran R, . Coronary artery stenting. Catheterization and Cardiovascular Interventions, 2002, 56(1): 83–102
11 Holzapfel G A, Sommer G, Gasser C T, . Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. American Journal of Physiology- Heart and Circulatory Physiology, 2005, 289(5): H2048–H2058
12 Frohlich J, Dobiasova M, Lear S, . The role of risk factors in the development of atherosclerosis. Critical Reviews in Clinical Laboratory Sciences, 2001, 38(5): 401–440
13 Robaina S, Jayachandran B, He Y, . Platelet adhesion to simulated stented surfaces. Journal of Endovascular Therapy, 2003, 10(5): 978–986
14 Rogers C, Edelman E R. Endovascular stent design dictates experimental restenosis and thrombosis. Circulation, 1995, 91(12): 2995–3001
15 Farb A, Weber D K, Kolodgie F D, . Morphological predictors of restenosis after coronary stenting in humans. Circulation, 2002, 105(25): 2974–2980
16 Wentzel J J, Gijsen F J, Stergiopulos N, . Shear stress, vascular remodeling and neointimal formation. Journal of Biomechanics, 2003, 36(5): 681–688
17 Wentzel J J, Krams R, Schuurbiers J C, . Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries. Circulation, 2001, 103(13): 1740–1745
18 Berry J L, Manoach E, Mekkaoui C, . Hemodynamics and wall mechanics of a compliance matching stent: in vitro and in vivo analysis. Journal of Vascular & Interventional Radiology, 2002, 13(1): 97–105
19 Glagov S, Zarins C K, Masawa N, . Mechanical functional role of non-atherosclerotic intimal thickening. Frontiers of Medical and Biological Engineering, 1993, 5(1): 37–43
20 Babapulle M N, Eisenberg M J. Coated stents for the prevention of restenosis: Part II. Circulation, 2002, 106(22): 2859–2866
21 Rebelo N, Perry M. Finite element analysis for the design of Nitinol medical devices. Minimally Invasive Therapy & Allied Technologies, 2009, 9(2): 75–80
22 Kastrati A, Dirschinger J, Boekstegers P, . Influence of stent design on 1-year outcome after coronary stent placement: a randomized comparison of five stent types in 1,147 unselected patients. Catheterization and Cardiovascular Interventions, 2000, 50(3): 290–297
23 Griffiths H, Peeters P, Verbist J, . Future devices: bioabsorbable stents. The British Journal of Cardiology, 2004, 11: AIC 80–AIC 84
25 Tominaga R, Kambic H E, Emoto H, . Effects of design geometry of intravascular endoprostheses on stenosis rate in normal rabbits. American Heart Journal, 1992, 123(1): 21–28
24 Gurbel P A, Callahan K P, Malinin A I, . Could stent design affect platelet activation? Results of the Platelet Activation in STenting (PAST) study. The Journal of Invasive Cardiology, 2002, 14(10): 584–589
26 Leimgruber P P, Roubin G S, Anderson H V, . Influence of intimal dissection on restenosis after successful coronary angioplasty. Circulation, 1985, 72(3): 530–535
27 Fischman D L, Leon M B, Baim D S, . A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. New England Journal of Medicine, 1994, 331(8): 496–501
28 Nuutinen J P, Clerc C, Reinikainen R, . Mechanical properties and in vitro degradation of bioabsorbable self-expanding braided stents. Journal of Biomaterials Science: Polymer Edition, 2003, 14(3): 255–266
29 Morton A C, Crossman D, Gunn J. The influence of physical stent parameters upon restenosis. Pathologie Biologie, 2004, 52(4): 196–205
30 Lau K W, Johan A, Sigwart U, . A stent is not just a stent: Stent construction and design do matter in its clinical performance. Singapore Medical Journal, 2004, 45(7): 305–311
31 Rogers C D. Optimal stent design for drug delivery. Reviews in Cardiovascular Medicine, 2004, 5(Suppl 2): S9–S15
32 Bennett M R, O’Sullivan M. Mechanisms of angioplasty and stent restenosis: implications for design of rational therapy. Pharmacology & Therapeutics, 2001, 91(2): 149–166
33 Tabata Y.Biomaterial technology for tissue engineering applications. Journal of the Royal Society Interface, 2009, 6(Suppl 3): S311–S324
34 Ramcharitar S, Serruys P W. Fully biodegradable coronary stents: progress to date. American Journal of Cardiovascular Drugs, 2008, 8(5): 305–314
35 Ormiston J A, Serruys P W, Regar E, . A bioabsorbable everolimus-eluting coronary stent system for patients with single de-novo coronary artery lesions (ABSORB): a prospective open-label trial. Lancet, 2008, 371(9616): 899–907
36 Seiler H G, Sigel H, Sigel A. Handbook on toxicity of inorganic compounds. Analytica Chimica Acta, 1987, 237: 511
37 Garg S, Serruys P. Biodegradable stents and non-biodegradable stents. Minerva Cardioangiologica, 2009, 57(5): 537–565
38 Bourantas C V, Onuma Y, Farooq V, . Bioresorbable scaffolds: current knowledge, potentialities and limitations experienced during their first clinical applications. International Journal of Cardiology, 2013, 167(1): 11–21
39 Heublein B, Rohde R, Kaese V, . Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology? Heart, 2003, 89(6): 651–656
40 Wiebe J, Nef H M, Hamm C W. Current status of bioresorbable scaffolds in the treatment of coronary artery disease. Journal of the American College of Cardiology, 2014, 64(23): 2541–2551
41 Iqbal J, Onuma Y, Ormiston J, . Bioresorbable scaffolds: rationale, current status, challenges, and future. European Heart Journal, 2014, 35(12): 765–776
42 Wang Y, Zhang X. Vascular restoration therapy and bioresorbable vascular scaffold. Regenerative Biomaterials, 2014, 1(1): 49–55
43 Waksman R, Pakala R, Kuchulakanti P K, . Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619
44 Ako J, Bonneau H N, Honda Y, . Design criteria for the ideal drug-eluting stent. The American Journal of Cardiology, 2007, 100(8B): 3M–9M
45 Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 2014, 15(2): 109–116
46 Di Mario C, Griffiths H, Goktekin O, . Drug-eluting bioabsorbable magnesium stent. Journal of Interventional Cardiology, 2004, 17(6): 391–395
47 Ruiz-García J, Refoyo E, Cuesta-López E, . Comparative results between metal stent and bioresorbable scaffold at two years postimplantation. Revista Espanola de Cardiologia (English Edition), 2014, 67(1): 66–68
48 Echeverri D, Cabrales J R. Terapia de restauración vascular con plataformas biorreabsorbibles. La cuarta revolución. Revista Colombiana de Cardiología, 2014, 21(4): 231–240
49 Puppi D, Chiellini F, Piras A M, . Polymeric materials for bone and cartilage repair. Progress in Polymer Science, 2010, 35(4): 403–440
50 Williams D F. Biodegradation of surgical polymers. Journal of Materials Science, 1982, 17(5): 1233–1246
51 Helmus M N, Gibbons D F, Cebon D. Biocompatibility: meeting a key functional requirement of next-generation medical devices. Toxicologic Pathology, 2008, 36(1): 70–80
52 Chen G, Ushida T, Tateishi T.Scaffold design for tissue engineering. Macromolecular Bioscience, 2002, 2(2): 67–77
53 Freier T. Biopolyesters in tissue engineering applications. Advances in Polymer Science, 2006, 203(1): 1–61
54 Sokolsky-Papkov M, Langer R, Domb A J. Synthesis of aliphatic polyesters by polycondensation using inorganic acid as catalyst. Polymers for Advanced Technologies, 2011, 22(5): 502–511
55 Tamai H, Igaki K, Kyo E, . Initial and 6-month results of biodegradable poly-l-lactic acid coronary stents in humans. Circulation, 2000, 102(4): 399–404
56 Ceonzo K, Gaynor A, Shaffer L, . Polyglycolic acid-induced inflammation: role of hydrolysis and resulting complement activation. Tissue Engineering, 2006, 12(2): 301–308
57 Brown D A, Lee E W, Loh C T, . A new wave in treatment of vascular occlusive disease: biodegradable stents – clinical experience and scientific principles. Journal of Vascular and Interventional Radiology, 2009, 20(3): 315–324
58 Martin O, Averous L. Poly (lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer, 2001, 42(14): 6209–6219
59 Sabir M I, Xu X, Li L. A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009, 44(21): 5713–5724
60 Pamula E, Menaszek E. In vitro and in vivo degradation of poly(L-lactide-co-glycolide) films and scaffolds. Journal of Materials Science: Materials in Medicine, 2008, 19(5): 2063–2070
61 Leenslag J W, Pennings A J, Bos R R, . Resorbable materials of poly(L-lactide): VII. In vivo and in vitro degradation. Biomaterials, 1987, 8(4): 311–314
63 Grabow N, Schlun M, Sternberg K, . Mechanical properties of laser cut poly(L-lactide) micro-specimens: implications for stent design, manufacture, and sterilization. Journal of Biomechanical Engineering, 2005, 127(1): 25–31
62 Stack R S, Califf R M, Phillips H R, . Interventional cardiac catheterization at Duke Medical Center. American Journal of Cardiology, 1988, 62(10 Pt 2): 3F–24F
64 Venkatraman S, Boey F, Lao L L. Implanted cardiovascular polymers: Natural, synthetic and bio-inspired. Progress in Polymer Science, 2008, 33(9): 853–874
65 Piao L, Deng M, Chen X, . Ring-opening polymerization of ε-caprolactone and L-lactide using organic amino calcium catalyst. Polymer, 2003, 44(8): 2331–2336
66 Bourantas C V, Zhang Y, Farooq V, . Bioresorbable scaffolds: current evidence and ongoing clinical trials. Current Cardiology Reports, 2012, 14(5): 626–634
67 Lepu Medical. NeoVas biodegradable scaffold ongoing clinical trials overview. [EB/OL], 2015,
68 MicroPort®. Firesorb bioresorbable rapamycin target eluting coronary scaffold system completes first successful implantation in the first FIM clinical trial. [EB/OL], 2015,
69 Engelberg I, Kohn J. Physico-mechanical properties of degradable polymers used in medical applications: a comparative study. Biomaterials, 1991, 12(3): 292–304
70 Pitt C G, Gu Z W. Modification of the rates of chain cleavage of poly(ε-caprolactone) and related polyesters in the solid state. Journal of Controlled Release, 1987, 4(4): 283–292
71 Heller J. Development of poly(ortho esters): a historical overview. Biomaterials, 1990, 11(9): 659–665
72 van der Giessen W J, Lincoff A M, Schwartz R S, . Marked inflammatory sequelae to implantation of biodegradable and nonbiodegradable polymers in porcine coronary arteries. Circulation, 1996, 94(7): 1690–1697
73 Gao R, Shi R, Qiao S, . A novel polymeric local heparin delivery stent: Initial experimental study. Journal of the American College of Cardiology, 1996, 27(2): 85–86
74 Susawa T, Shiraki K, Shimizu Y. Biodegradable intracoronary stents in adult dogs. Journal of the American College of Cardiology, 1993, 21: 483A
75 Tsuji T, Tamai H, Igaki K, . Biodegradable stents as a platform to drug loading. International Journal of Cardiovascular Interventions, 2003, 5(1): 13–16
76 Zidar J, Lincoff A, Stack R.Biodegradable stents. Textbook of Interventional Cardiology, 1994, 2: 787–802
77 Ye Y W, Landau C, Meidell R S, . Improved bioresorbable microporous intravascular stents for gene therapy. ASAIO Journal, 1996, 42(5): M823–M827
78 Heller J, Barr J, Ng S Y, . Poly(ortho esters) – their development and some recent applications. European Journal of Pharmaceutics and Biopharmaceutics, 2000, 50(1): 121–128
79 Capancioni S, Schwach-Abdellaoui K, Kloeti W, . In vitro monitoring of poly (ortho ester) degradation by electron paramagnetic resonance imaging. Macromolecules, 2003, 36(16): 6135–6141
80 Göpferich A. Mechanisms of polymer degradation and erosion. Biomaterials, 1996, 17(2): 103–114
81 Hofmann D, Entrialgo-Castaño M, Kratz K, . Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials. Advanced Materials, 2009, 21(32–33): 3237–3245
82 Heller J. Poly (ortho esters). Berlin Heidelberg: Springer, 1993, 41–92
83 Heller J, Penhale D W, Fritzinger B K, . Controlled release of contraceptive steroids from biodegradable poly (ortho esters). Contraceptive Delivery Systems, 1983, 4(1): 43–53
84 Shih C, Higuchi T, Himmelstein K J. Drug delivery from catalysed erodible polymeric matrices of poly(ortho ester)s. Biomaterials, 1984, 5(4): 237–240
85 Baei M S, Najafpour G D, Younesi H, . Poly(3-hydroxybutyrate) synthesis by cupriavidus necator DSMZ 545 utilizing various carbon sources. World Applied Sciences Journal, 2009, (2): 157–161
86 Holland S J, Jolly A M, Yasin M, . Polymers for biodegradable medical devices: II. Hydroxybutyrate–hydroxyvalerate copolymers: hydrolytic degradation studies. Biomaterials, 1987, 8(4): 289–295
87 Wang H T, Palmer H, Linhardt R J, . Degradation of poly(ester) microspheres. Biomaterials, 1990, 11(9): 679–685
88 Zhao K, Deng Y, Chen G Q. Effects of surface morphology on the biocompatibility of polyhydroxyalkanoates. Biochemical Engineering Journal, 2003, 16(2): 115–123
89 Gogolewski S, Jovanovic M, Perren S M, . Tissue response and in vivo degradation of selected polyhydroxyacids: polylactides (PLA), poly(3-hydroxybutyrate) (PHB), and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHB/VA). Journal of Biomedical Materials Research, 1993, 27(9): 1135–1148
90 Unverdorben M, Spielberger A, Schywalsky M, . A polyhydroxybutyrate biodegradable stent: preliminary experience in the rabbit. Cardiovascular and Interventional Radiology, 2002, 25(2): 127–132
91 Domb A J, Amselem S, Shah J, . Polyanhydrides: Synthesis and characterization. Berlin Heidelberg: Springer, 1993, 93–141
92 Lucas N, Bienaime C, Belloy C, . Polymer biodegradation: mechanisms and estimation techniques. Chemosphere, 2008, 73(4): 429–442
93 Davies M C, Shakesheff K M, Shard A G, . Surface analysis of biodegradable polymer blends of poly(sebacic anhydride) and poly(DL-lactic acid). Macromolecules, 1996, 29(6): 2205–2212
94 Uhrich K E, Gupta A, Thomas T T, . Synthesis and characterization of degradable poly(anhydride-co-imides). Macromolecules, 1995, 28(7): 2184–2193
95 Chasin M, Domb A, Ron E, . Polyanhydrides as drug delivery systems. In: Chasin M, Langer R, eds. Biodegradable Polymers as Drug Delivery Systems. New York: Marcel Dekker, 1990, 45: 43–70
96 Laurencin C, Domb A, Morris C, . Poly(anhydride) administration in high doses in vivo: studies of biocompatibility and toxicology. Journal of Biomedical Materials Research, 1990, 24(11): 1463–1481
97 Jabara R.Poly-anhydride based on salicylic acid and adipic acid anhydride.Barcelona, Spain: EuroPCR, 2009
98 Wang S, Lu L, Yaszemski M J. Bone-tissue-engineering material poly(propylene fumarate): correlation between molecular weight, chain dimensions, and physical properties. Biomacromolecules, 2006, 7(6): 1976–1982
99 Shung A K, Timmer M D, Jo S, . Kinetics of poly(propylene fumarate) synthesis by step polymerization of diethyl fumarate and propylene glycol using zinc chloride as a catalyst. Journal of Biomaterials Science: Polymer Edition, 2002, 13(1): 95–108
100 Fisher J P, Dean D, Mikos A G. Photocrosslinking characteristics and mechanical properties of diethyl fumarate/poly(propylene fumarate) biomaterials. Biomaterials, 2002, 23(22): 4333–4343
101 Suggs L J, Krishnan R S, Garcia C A, . In vitro and in vivo degradation of poly(propylene fumarate-co-ethylene glycol) hydrogels. Journal of Biomedical Materials Research, 1998, 42(2): 312–320
102 Herold D A, Keil K, Bruns D E. Oxidation of polyethylene glycols by alcohol dehydrogenase. Biochemical Pharmacology, 1989, 38(1): 73–76
103 Gilding D K, Reed A M. Biodegradable polymers for use in surgery – poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers: 1. Polymer, 1979, 20(12): 1454–1458
104 Mody P C, Wilkes G L, Wagener K B, . Structure–property relationships of a new series of segmented polyether–polyester copolymers. Journal of Applied Polymer Science, 1981, 26(9): 2853–2878
105 Pathak C P, Sawhney A S, Quinn C P, . Polyimide-polyethylene glycol block copolymers: synthesis, characterization, and initial evaluation as a biomaterial. Journal of Biomaterials Science: Polymer Edition, 1994, 6(4): 313–323
106 Zhu K J, Lin X, Yang S. Preparation and properties of D, L-lactide and ethylene oxide copolymer: A modifying biodegradable polymeric material. Journal of Polymer Science Part C: Polymer Letters, 1986, 24(7): 331–337
107 Sawhney A S, Pathak C P, Hubbell J A. Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(α-hydroxy acid) diacrylate macromers. Macromolecules, 1993, 26(4): 581–587
108 Hill-West J L, Chowdhury S M, Slepian M J, . Inhibition of thrombosis and intimal thickening by in situ photopolymerization of thin hydrogel barriers. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(13): 5967–5971
109 Suggs L J, Shive M S, Garcia C A, . In vitro cytotoxicity and in vivo biocompatibility of poly(propylene fumarate-co-ethylene glycol) hydrogels. Journal of Biomedical Materials Research, 1999, 46(1): 22–32
110 Kohn J, Langer R. Polymerization reactions involving the side chains of α-L-amino acids. Journal of the American Chemical Society, 1987, 109(3): 817–820
111 Ertel S I, Kohn J. Evaluation of a series of tyrosine-derived polycarbonates as degradable biomaterials. Journal of Biomedical Materials Research, 1994, 28(8): 919–930
112 Tangpasuthadol V, Pendharkar S M, Kohn J. Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part I: study of model compounds. Biomaterials, 2000, 21(23): 2371–2378
113 Tangpasuthadol V, Pendharkar S M, Peterson R C, . Hydrolytic degradation of tyrosine-derived polycarbonates, a class of new biomaterials. Part II: 3-yr study of polymeric devices. Biomaterials, 2000, 21(23): 2379–2387
114 Pulapura S, Kohn J. Tyrosine-derived polycarbonates: backbone-modified “pseudo”-poly (amino acids) designed for biomedical applications. Biopolymers, 1992, 32(4): 411–417
115 Bourke S L, Kohn J, Dunn M G. Preliminary development of a novel resorbable synthetic polymer fiber scaffold for anterior cruciate ligament reconstruction. Tissue Engineering, 2004, 10(1–2): 43–52
116 Bailey L O, Becker M L, Stephens J S, . Cellular response to phase-separated blends of tyrosine-derived polycarbonates. Journal of Biomedical Materials Research Part A, 2006, 76(3): 491–502
117 Strandberg E, Zeltinger J, Schulz D G, . Late positive remodeling and late lumen gain contribute to vascular restoration by a non-drug eluting bioresorbable scaffold: a four-year intravascular ultrasound study in normal porcine coronary arteries. Circulation: Cardiovascular Interventions, 2012, 5(1): 39–46
118 Grube E. The REVA Tyrosine-derived polycarbonate bioabsorbable stent: final results from the RESORB First-in-man clinical trial and next generation designs. Transcatheter Cardiovascular Therapeutics, 2008
119 Witte F. Reprint of: The history of biodegradable magnesium implants: A review. Acta Biomaterialia, 2015, 23(Supp l): S28–S40
120 Song G, Song S Z. A possible biodegradable magnesium implant material. Advanced Engineering Materials, 2007, 9(4): 298–302
121 Vormann J. Magnesium: nutrition and metabolism. Molecular Aspects of Medicine, 2003, 24(1–3): 27–37
122 Mult E, Haferkamp H, Niemeyer M, . Laser and electron beam welding of magnesium materials. Welding and Cutting, 2000, 52(8): 178–180
123 Marya M, Edwards G. The laser welding of magnesium alloy AZ91. Welding in the World, 2000, 44(2): 31–37
124 Mordike B, Ebert T. Magnesium: properties–applications–potential. Materials Science and Engineering A, 2001, 302(1): 37–45
125 Aghion E, Bronfin B. Magnesium alloys development towards the 21st century. Materials Science Forum, 2000, 350–351: 19–30
126 Pastor M, Zhao H, Debroy T. Continuous wave-Nd: yttrium–aluminum–garnet laser welding of AM60B magnesium alloy. Journal of Laser Applications, 2000, 12(3): 91–100
127 Marya M, Edwards G, Marya S, . Fundamentals in the fusion welding of magnesium and its alloys. Proceedings of the Seventh JWS International Symposium, Kobe, 2001, 597–602
128 Waksman R, Pakala R, Kuchulakanti P K, . Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619
129 Waksman R, Pakala R, Hellinga D, . Effect of bioabsorbable magnesium alloy stent on neointimal formation in a porcine coronary model. European Heart Journal, 2005, 26: 417
130 Waksman R, Pakala R, Okabe T, . Efficacy and safety of absorbable metallic stents with adjunct intracoronary beta radiation in porcine coronary arteries. Journal of Interventional Cardiology, 2007, 20(5): 367–372
131 Friedrich H E, Mordike B L. Magnesium Technology. Berlin: Springer, 2006, 788
132 Erbel R, Di Mario C, Bartunek J, . Temporary scaffolding of coronary arteries with bioabsorbable magnesium stents: a prospective, non-randomised multicentre trial. Lancet, 2007, 369(9576): 1869–1875
133 Peeters P, Bosiers M, Verbist J, . Preliminary results after application of absorbable metal stents in patients with critical limb ischemia. Journal of Endovascular Therapy, 2005, 12(1): 1–5
134 Schranz D, Zartner P, Michel-Behnke I, . Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheterization and Cardiovascular Interventions, 2006, 67(5): 671–673
135 Bach F W, Schaper M, Jaschik C. Influence of lithium on hcp magnesium alloys. Materials Science Forum, 2003, 419–422: 1037–1042
136 Kaese V, Niemeyer M, Tai P T, . Korrosionsschützendes Legieren von Magnesiumbasiswerkstoffen. Teil 1: Dynamische Alkalisierung der Grenzschicht-Tertiäre Legierungssysteme. Materials & Corrosion, 1999, 50(4): 191–198
137 Magnesium Elektron Datasheet. WE43. Magnesium Elektron, 2005
138 Günter N, Kohei K, Kenji H, . Magnesium-Based Alloys. Wiley-VCH Verlag GmbH & Co. KGaA, 2006
139 Nagels J, Stokdijk M, Rozing P M. Stress shielding and bone resorption in shoulder arthroplasty. Journal of Shoulder and Elbow Surgery, 2003, 12(1): 35–39
140 Park J B, Bronzino J D. Biomaterials: Principles and Applications. CRC Press, 2003
141 Clark G C, Williams D F. The effects of proteins on metallic corrosion. Journal of Biomedical Materials Research, 1982, 16(2): 125–134
142 Waksman R, Pakala R, Kuchulakanti P K, . Safety and efficacy of bioabsorbable magnesium alloy stents in porcine coronary arteries. Catheterization and Cardiovascular Interventions, 2006, 68(4): 607–617, discussion 618–619
143 Waksman R, Pakala R, Okabe T, . Efficacy and safety of absorbable metallic stents with adjunct intracoronary beta radiation in porcine coronary arteries. Journal of Interventional Cardiology, 2007, 20(5): 367–372
144 Kitabata H, Waksman R, Warnack B. Bioresorbable metal scaffold for cardiovascular application: current knowledge and future perspectives. Cardiovascular Revascularization Medicine, 2014, 15(2): 109–116
145 Zartner P, Cesnjevar R, Singer H, . First successful implantation of a biodegradable metal stent into the left pulmonary artery of a preterm baby. Catheterization and Cardiovascular Interventions, 2005, 66(4): 590–594
146 Schranz D, Zartner P, Michel-Behnke I, . Bioabsorbable metal stents for percutaneous treatment of critical recoarctation of the aorta in a newborn. Catheterization and Cardiovascular Interventions, 2006, 67(5): 671–673
147 Zartner P, Buettner M, Singer H, . First biodegradable metal stent in a child with congenital heart disease: evaluation of macro and histopathology. Catheterization and Cardiovascular Interventions, 2007, 69(3): 443–446
148 McMahon C J, Oslizlok P, Walsh K P. Early restenosis following biodegradable stent implantation in an aortopulmonary collateral of a patient with pulmonary atresia and hypoplastic pulmonary arteries. Catheterization and Cardiovascular Interventions, 2007, 69(5): 735–738
149 Morice M C, Serruys P W, Sousa E J. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. The New England Journal of Medicine, 2002, 346(23): 1773–1780
150 Se&Co B. CORRECTING & REPLACING BIOTRONIK announces positive 6-month results for dreams, the pioneering drug-eluting absorbable metal scaffold. Biomedical Market Newsletter, 5/17/2011, 257
151 Hentze M W, Muckenthaler M U, Andrews N C. Balancing acts: molecular control of mammalian iron metabolism. Cell, 2004, 117(3): 285–297
152 May T, Mueller P P, Weich H, . Establishment of murine cell lines by constitutive and conditional immortalization. Journal of Biotechnology, 2005, 120(1): 99–110
153 Hermawan H, Alamdari H, Mantovani D, . Iron–manganese: new class of metallic degradable biomaterials prepared by powder metallurgy. Powder Metallurgy, 2008, 51(1): 38–45
154 Peuster M, Hesse C, Schloo T, . Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta. Biomaterials, 2006, 27(28): 4955–4962
155 Moravej M, Prima F, Fiset M, . Electroformed iron as new biomaterial for degradable stents: development process and structure–properties relationship. Acta Biomaterialia, 2010, 6(5): 1726–1735
156 Zhu S, Huang N, Xu L, . Biocompatibility of Fe–O films synthesized by plasma immersion ion implantation and deposition. Surface and Coatings Technology, 2009, 203(10–11): 1523–1529
157 Liu B, Zheng Y F, Ruan L. In vitro investigation of Fe30Mn6Si shape memory alloy as potential biodegradable metallic material. Materials Letters, 2011, 65(3): 540–543
158 Nie F L, Zheng Y F, Wei S C, . In vitro corrosion, cytotoxicity and hemocompatibility of bulk nanocrystalline pure iron. Biomedical Materials, 2010, 5(6): 065015
159 Mueller P P, May T, Perz A, . Control of smooth muscle cell proliferation by ferrous iron. Biomaterials, 2006, 27(10): 2193–2200
160 Francis A, Yang Y, Virtanen S, . Iron and iron-based alloys for temporary cardiovascular applications. Journal of Materials Science: Materials in Medicine, 2015, 26(3): 138
161 Peuster M, Wohlsein P, Brügmann M, . A novel approach to temporary stenting: degradable cardiovascular stents produced from corrodible metal-results 6–18 months after implantation into New Zealand white rabbits. Heart, 2001, 86(5): 563–569
162 Schinhammer M, Hänzi A C, Löffler J F, . Design strategy for biodegradable Fe-based alloys for medical applications. Acta Biomaterialia, 2010, 6(5): 1705–1713
163 Hermawan H, Purnama A, Dube D, . Fe–Mn alloys for metallic biodegradable stents: degradation and cell viability studies. Acta Biomaterialia, 2010, 6(5): 1852–1860
164 Moravej M, Purnama A, Fiset M, . Electroformed pure iron as a new biomaterial for degradable stents: in vitro degradation and preliminary cell viability studies. Acta Biomaterialia, 2010, 6(5): 1843–1851
165 Liu B, Zheng Y F. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron. Acta Biomaterialia, 2011, 7(3): 1407–1420
166 Lin W J, Zhang D Y, Zhang G, . Design and characterization of a novel biocorrodible iron-based drug-eluting coronary scaffold. Materials & Design, 2015, 91: 72–79
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed