Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2017, Vol. 11 Issue (2): 106-119   https://doi.org/10.1007/s11706-017-0375-y
  本期目录
Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration
Qin YANG1,2, Yingying DU1,2, Yifan WANG1,2, Zhiying WANG1,2, Jun MA1,2, Jianglin WANG1,2(), Shengmin ZHANG1,2()
1. Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan 430074, China
2. Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
 全文: PDF(803 KB)   HTML
Abstract

Bio-inspired hybrid materials that contain organic and inorganic networks interpenetration at the molecular level have been a particular focus of interest on designing novel nanoscale composites. Here we firstly synthesized a series of hybrid bone composites, silicon-hydroxyapatites/silk fibroin/collagen, based on a specific molecular assembled strategy. Results of material characterization confirmed that silicate had been successfully doped into nano-hydroxyapatite lattice. In vitro evaluation at the cellular level clearly showed that these Si-doped composites were capable of promoting the adhesion and proliferation of rat mesenchymal stem cells (rMSCs), extremely enhancing osteoblastic differentiation of rMSCs compared with silicon-free composite. More interestingly, we found there was a critical point of silicon content in the composition on regulating multiple cell behaviors. In vivo animal evaluation further demonstrated that Si-doped composites enabled to significantly improve the repair of cranial bone defect. Consequently, our current work not only suggests fabricating a potential bone repair materials by integrating element-doping and molecular assembled strategy in one system, but also paves a new way for constructing multi-functional composite materials in the future.

Key wordssilicate-doped    molecular assembly    biomimetic bone    bone regeneration    osteoblastic differentiation
收稿日期: 2017-02-17      出版日期: 2017-05-26
Corresponding Author(s): Jianglin WANG,Shengmin ZHANG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2017, 11(2): 106-119.
Qin YANG, Yingying DU, Yifan WANG, Zhiying WANG, Jun MA, Jianglin WANG, Shengmin ZHANG. Si-doping bone composite based on protein template-mediated assembly for enhancing bone regeneration. Front. Mater. Sci., 2017, 11(2): 106-119.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-017-0375-y
https://academic.hep.com.cn/foms/CN/Y2017/V11/I2/106
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
  
  
  
1 Mieszawska A J ,  Fourligas N ,  Georgakoudi I , et al.. Osteoinductive silk-silica composite biomaterials for bone regeneration. Biomaterials, 2010, 31(34): 8902–8910
https://doi.org/10.1016/j.biomaterials.2010.07.109 pmid: 20817293
2 Khan A F, Saleem  M, Afzal A , et al.. Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering C: Materials for Biological Applications, 2014, 35: 245–252
https://doi.org/10.1016/j.msec.2013.11.013 pmid: 24411375
3 Ma R, Tang  S, Tan H , et al.. Preparation, characterization, in vitro bioactivity, and cellular responses to a polyetheretherketone bioactive composite containing nanocalcium silicate for bone repair. ACS Applied Materials & Interfaces, 2014, 6(15): 12214–12225
https://doi.org/10.1021/am504409q pmid: 25013988
4 Wang S, Wang  X, Draenert F G , et al.. Bioactive and biodegradable silica biomaterial for bone regeneration. Bone, 2014, 67: 292–304
https://doi.org/10.1016/j.bone.2014.07.025 pmid: 25088401
5 Pabbruwe M B, Standard  O C, Sorrell  C C, et al.. Effect of silicon doping on bone formation within alumina porous domains. Journal of Biomedical Materials Research Part A, 2004, 71(2): 250–257
https://doi.org/10.1002/jbm.a.30154 pmid: 15386488
6 Hing K A, Revell  P A, Smith  N, et al.. Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds. Biomaterials, 2006, 27(29): 5014–5026
https://doi.org/10.1016/j.biomaterials.2006.05.039 pmid: 16790272
7 Nakata K, Kubo  T, Numako C , et al.. Synthesis and characterization of silicon-doped hydroxyapatite. Materials Transactions, 2009, 50(5): 1046–1049
https://doi.org/10.2320/matertrans.MC200808
8 Manchón A, Alkhraisat  M, Rueda-Rodriguez C , et al.. Silicon calcium phosphate ceramic as novel biomaterial to simulate the bone regenerative properties of autologous bone. Journal of Biomedical Materials Research Part A, 2015, 103(2): 479–488
https://doi.org/10.1002/jbm.a.35196 pmid: 24737706
9 Aniagyei S E, Dufort  C, Kao C C , et al.. Self-assembly approaches to nanomaterial encapsulation in viral protein cages. Journal of Materials Chemistry, 2008, 18(32): 3763–3774
https://doi.org/10.1039/b805874c pmid: 19809586
10 He G, Dahl  T, Veis A , et al.. Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein 1. Nature Materials, 2003, 2(8): 552–558
https://doi.org/10.1038/nmat945 pmid: 12872163
11 Koti A S R ,  Periasamy N . Self-assembly of template-directed J-aggregates of porphyrin. Chemistry of Materials, 2003, 15(2): 369–371
https://doi.org/10.1021/cm025664h
12 Weiner S, Wagner  H D. The material bone: Structure mechanical function relations. Annual Review of Materials Science, 1998, 28(1): 271–298
https://doi.org/10.1146/annurev.matsci.28.1.271
13 Olszta M J, Cheng  X G, Jee  S S, et al.. Bone structure and formation: A new perspective. Materials Science and Engineering R: Reports, 2007, 58(3–5): 77–116
https://doi.org/10.1016/j.mser.2007.05.001
14 Wang J, Zhou  W, Hu W , et al.. Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. Journal of Biomedical Materials Research Part A, 2011, 99(3): 327–334
https://doi.org/10.1002/jbm.a.32602 pmid: 19705470
15 Hardy J G, Scheibel  T R. Composite materials based on silk proteins. Progress in Polymer Science, 2010, 35(9): 1093–1115
https://doi.org/10.1016/j.progpolymsci.2010.04.005
16 Chakraborty J, Sinha  M K, Basu  D. Biomolecular template-induced biomimetic coating of hydroxyapatite on an SS 316 L substrate. Journal of the American Ceramic Society, 2007, 90(4): 1258–1261
https://doi.org/10.1111/j.1551-2916.2007.01596.x
17 Li X, Feng  Q, Liu X , et al.. Collagen-based implants reinforced by chitin fibres in a goat shank bone defect model. Biomaterials, 2006, 27(9): 1917–1923
https://doi.org/10.1016/j.biomaterials.2005.11.013 pmid: 16310847
18 Gleeson J P, Plunkett  N A, O’Brien  F J. Addition of hydroxyapatite improves stiffness, interconnectivity and osteogenic potential of a highly porous collagen-based scaffold for bone tissue regeneration. European Cells & Materials, 2010, 20: 218–230
https://doi.org/10.22203/eCM.v020a18 pmid: 20922667
19 Collins A M, Skaer  N J V, Gheysens  T, et al.. Bone-like resorbable silk-based scaffolds for load-bearing osteoregenerative applications. Advanced Materials, 2009, 21(1): 75–78
https://doi.org/10.1002/adma.200802239
20 Denry I, Kuhn  L T. Design and characterization of calcium phosphate ceramic scaffolds for bone tissue engineering. Dental Materials, 2016, 32(1): 43–53
https://doi.org/10.1016/j.dental.2015.09.008 pmid: 26423007
21 Jiang C Y, Wang  X Y, Gunawidjaja  R, et al.. Mechanical properties of robust ultrathin silk fibroin films. Advanced Functional Materials, 2007, 17(13): 2229–2237
https://doi.org/10.1002/adfm.200601136
22 Wang J, Zhou  W, Hu W , et al.. Collagen/silk fibroin bi-template induced biomimetic bone-like substitutes. Journal of Biomedical Materials Research Part A, 2011, 99(3): 327–334
https://doi.org/10.1002/jbm.a.32602 pmid: 19705470
23 Wen X-R, Tu  C-Q, Wen X-H . Determination of acetylcysteine in pharmaceutical samples by silicomolybdenum blue spectrophotometry. Journal of the Chinese Chemical Society, 2015, 62(3): 296–300
https://doi.org/10.1002/jccs.201400344
24 Wang J, Yang  Q, Mao C , et al.. Osteogenic differentiation of bone marrow mesenchymal stem cells on the collagen/silk fibroin bi-template-induced biomimetic bone substitutes. Journal of Biomedical Materials Research Part A, 2012, 100(11): 2929–2938
https://doi.org/10.1002/jbm.a.34236 pmid: 22700033
25 Wang Y, Wang  J, Hao H , et al.. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano, 2016, 10(11): 9927–9937
https://doi.org/10.1021/acsnano.6b03835 pmid: 27797178
26 Yao J, Tjandra  W, Chen Y Z , et al.. Hydroxyapatite nanostructure material derived using cationic surfactant as a template. Journal of Materials Chemistry, 2003, 13(12): 3053–3057
https://doi.org/10.1039/b308801d
27 Wang J, Hu  W, Liu Q , et al.. Dual-functional composite with anticoagulant and antibacterial properties based on heparinized silk fibroin and chitosan. Colloids and Surfaces B: Biointerfaces, 2011, 85(2): 241–247
https://doi.org/10.1016/j.colsurfb.2011.02.035 pmid: 21459560
28 Tadic D, Epple  M. A thorough physicochemical characterization of 14 calcium phosphate-based bone substitution materials in comparison to natural bone. Biomaterials, 2004, 25(6): 987–994
https://doi.org/10.1016/S0142-9612(03)00621-5 pmid: 14615163
29 Clem W C, Chowdhury  S, Catledge S A , et al.. Mesenchymal stem cell interaction with ultra-smooth nanostructured diamond for wear-resistant orthopaedic implants. Biomaterials, 2008, 29(24–25): 3461–3468
https://doi.org/10.1016/j.biomaterials.2008.04.045 pmid: 18490051
30 Hu Y, Cai  K, Luo Z , et al.. Surface mediated in situ differentiation of mesenchymal stem cells on gene-functionalized titanium films fabricated by layer-by-layer technique. Biomaterials, 2009, 30(21): 3626–3635
https://doi.org/10.1016/j.biomaterials.2009.03.037 pmid: 19371947
31 Birdi-Chouhan G, Shelton  R M, Bowen  J, et al.. Soluble silicon patterns and templates: calcium phosphate nanocrystal deposition in collagen type 1. RSC Advances, 2016, 6(102): 99809–99815
https://doi.org/10.1039/C6RA19784A
32 Bhuiyan D, Jablonsky  M J, Kolesov  I, et al.. Novel synthesis and characterization of a collagen-based biopolymer initiated by hydroxyapatite nanoparticles. Acta Biomaterialia, 2015, 15: 181–190
https://doi.org/10.1016/j.actbio.2014.11.044 pmid: 25481742
33 Li G, Chen  Z Q, Wu  X H, et al.. Study of adherence of normal oral bacteria on polymethyl methyacrylate containing silver-supported silicate inorganic antibacteria. West China Journal of Stomatology, 2007, 25(3): 280–284 (in Chinese)
pmid: 17629208
34 Kundu B, Rajkhowa  R, Kundu S C , et al.. Silk fibroin biomaterials for tissue regenerations. Advanced Drug Delivery Reviews, 2013, 65(4): 457–470
https://doi.org/10.1016/j.addr.2012.09.043 pmid: 23137786
35 Nazarov R, Jin  H J, Kaplan  D L. Porous 3-D scaffolds from regenerated silk  fibroin. Biomacromolecules, 2004, 5(3): 718–726
https://doi.org/10.1021/bm034327e pmid: 15132652
36 Li L, Guan  Y, Liu H , et al.. Silica nanorattle-doxorubicin-anchored mesenchymal stem cells for tumor-tropic therapy. ACS Nano, 2011, 5(9): 7462–7470
https://doi.org/10.1021/nn202399w pmid: 21854047
37 Wu C, Chang  J. A review of bioactive silicate ceramics. Biomedical Materials, 2013, 8(3): 032001
https://doi.org/10.1088/1748-6041/8/3/032001 pmid: 23567351
38 Han P, Wu  C, Xiao Y . The effect of silicate ions on proliferation, osteogenic differentiation and cell signalling pathways (WNT and SHH) of bone marrow stromal cells.  Biomaterials Science, 2013, 1(4): 379–392
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed