Convenient synthesis of twin-Christmas tree-like PbWO4 microcrystals and their photocatalytic properties
Jin ZHANG1,2(), Li-Li PENG1,2, Ying TANG1,2, Huijie WU3
1. College of Materials and Chemical Engineering, Chongqing University of Arts and Sciences, Chongqing 402160, China 2. Chongqing Key Laboratory of Environmental Materials & Remediation, Chongqing 402160, China 3. Research?Institute?for?New?Materials?Technology, Chongqing University of Arts and Sciences, Chongqing 400715, China
Novel twin-Christmas tree-like PbWO4 microcrystals have been prepared via a convenient aqueous solution route at room temperature under the assistance of β-cyclodextrin (β-CD). The product was characterized by XRD, EDX, SEM, TEM, UV-vis and PL and BET techniques. It was found that β-CD plays an important role in the forming of twin-Christmas tree-like PbWO4 microcrystals. A five-step growth mechanism was proposed to explain the formation of such twin-Christmas tree-like structures. The photocatalytic performance of PbWO4 microcrystals was evaluated by measuring the decomposition rate of methylene blue (MB) and malachite green (MG) solution under the UV irradiation, and the photocatalytic results indicated that as-prepared PbWO4 microcrystals exhibit good and versatile photocatalytic activity as well as excellent recyclability.
Tian P, Zhang Y, Senevirathne K, et al.. Diverse structural and magnetic properties of differently prepared MnAs nanoparticles. ACS Nano, 2011, 5(4): 2970–2978 https://doi.org/10.1021/nn200020r
pmid: 21366350
2
Mak A C, Yu C L, Yu J C, et al.. A lamellar ceria structure with encapsulated platinum nanoparticles. Nano Research, 2008, 1(6): 474–482 https://doi.org/10.1007/s12274-008-8050-3
Tang H, Chang S F, Jiang L Y, et al.. Novel spindle-shaped nanoporous TiO2 coupled graphitic g-C3N4 nanosheets with enhanced visible-light photocatalytic activity. Ceramics International, 2016, 42(16): 18443–18452 https://doi.org/10.1016/j.ceramint.2016.08.179
5
Yang X, Chen Z, Xu J, et al.. Tuning the morphology of g-C3N4 for improvement of Z-scheme photocatalytic water oxidation. ACS Applied Materials & Interfaces, 2015, 7(28): 15285–15293 https://doi.org/10.1021/acsami.5b02649
pmid: 26118320
6
Barth J V, Costantini G, Kern K. Engineering atomic and molecular nanostructures at surfaces. Nature, 2005, 437(7059): 671–679 https://doi.org/10.1038/nature04166
pmid: 16193042
7
Cerný P, Jelinkova H, Zverev P G, et al.. Solid state lasers with Raman frequency conversion. Progress in Quantum Electronics, 2004, 28(2): 113–143 https://doi.org/10.1016/j.pquantelec.2003.09.003
8
Angloher G, Bruckmayer M, Bucci C, et al.. Limits on WIMP dark matter using sapphire cryogenic detectors. Astroparticle Physics, 2002, 18(1): 43–55 https://doi.org/10.1016/S0927-6505(02)00111-1
9
Sundaram R, Nagaraja K S. Electrical and humidity sensing properties of lead(II) tungstate–tungsten(VI) oxide and zinc(II) tungstate–tungsten(VI) oxide composites. Materials Research Bulletin, 2004, 39(4–5): 581–590 https://doi.org/10.1016/j.materresbull.2003.12.014
10
Faure N, Borel C, Couchaud M, et al.. Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2. Applied Physics B: Lasers and Optics, 1996, 63(6): 593–598
11
Arora S K, Chudasama B. Flux growth and optoelectronic study of PbWO4 single crystals. Crystal Growth & Design, 2007, 7(2): 296–299 https://doi.org/10.1021/cg060368t
12
Neiman Y, Guseva A F, Sharafutdinov A R. Origin of potential difference selfgenerated by reaction and transport processes. Solid State Ionics, 1997, 101–103: 367–372 https://doi.org/10.1016/S0167-2738(97)84054-4
13
Zeng H C. Rectangular vacancy island formation and self-depletion in Czochralski-grown PbMoO4 single crystal during heat treatment. Journal of Crystal Growth, 1996, 160(1–2): 119–128 https://doi.org/10.1016/0022-0248(95)00893-4
14
Yu C L, Cao F F, Li X, et al.. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chemical Engineering Journal, 2013, 219: 86–95 https://doi.org/10.1016/j.cej.2012.12.064
15
Tang H, Li C S, Song H, et al.. Controllable synthesis, characterization and growth mechanism of three-dimensional hierarchical PbWO4 microstructures. CrystEngComm, 2011, 13(16): 5119–5124 https://doi.org/10.1039/c1ce05060e
16
Wang G Z, Hao C C. Fast synthesis and morphology control of lead tungstate microcrystals via a microwave-assisted method. Materials Research Bulletin, 2009, 44(2): 418–421 https://doi.org/10.1016/j.materresbull.2008.04.021
17
Wang Y G, Yang L L, Wang Y J, et al.. Controlled synthesis of PbWO4 dendrites by a simple sonochemical method. Journal of Alloys and Compounds, 2013, 554: 86–88 https://doi.org/10.1016/j.jallcom.2012.11.156
18
Fu H B, Pan C S, Zhang L W, et al.. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin, 2007, 42(4): 696–706 https://doi.org/10.1016/j.materresbull.2006.07.017
19
Zhang Q, Yao W T, Chen X Y, et al.. Nearly monodisperse tungstate MWO4 microspheres (M= Pb, Ca): surfactant-assisted solution synthesis and optical properties. Crystal Growth & Design, 2007, 7(8): 1423–1431
20
Crane M, Frost R L, Williams P A, et al.. Raman spectroscopy of the molybdate minerals chillagite (tungsteinian wulfenite-I4), stolzite, scheelite, wolframite and wulfenite. Journal of Raman Spectroscopy, 2002, 33(1): 62–66 https://doi.org/10.1002/jrs.820
21
Frost R L, Duong L, Weier M. Raman microscopy of selected tungstate minerals. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(8–9): 1853–1859 https://doi.org/10.1016/j.saa.2003.10.002
pmid: 15248960
22
Bastians S, Crump G, Griffith W P, et al.. Raspite and studtite: Raman spectra of two unique minerals. Journal of Raman Spectroscopy, 2004, 35(8–9): 726–731 https://doi.org/10.1002/jrs.1176
23
Jin R C, Chen G, Pei J, et al.. Facile solvothermal synthesis and growth mechanism of flower-like PbTe dendrites assisted by cyclodextrin. CrystEngComm, 2012, 14(6): 2327–2332 https://doi.org/10.1039/c2ce06417k
24
Li Q, Yam V W W. High-yield synthesis of selenium nanowires in water at room temperature. Chemical Communications, 2006, 9(9): 1006–1008 https://doi.org/ 10.1039/b515025f
pmid: 16491191
25
Bonini M, Rossi S, Karlsson G, et al.. Self-assembly of β-cyclodextrin in water. Part 1: Cryo-TEM and dynamic and static light scattering. Langmuir, 2006, 22(4): 1478–1484 https://doi.org/10.1021/la052878f
pmid: 16460065
Banfield J F, Welch S A, Zhang H, et al.. Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science, 2000, 289(5480): 751–754 https://doi.org/10.1126/science.289.5480.751
pmid: 10926531
28
Li Q, Shao M W, Yu G H, et al.. A solvent-reduction approach to tetrapod-like copper(I) chloride crystallites. Journal of Materials Chemistry, 2003, 13(2): 424–427 https://doi.org/10.1039/b204858b
29
Fu H B, Pan V S, Zhang L W, et al.. Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Materials Research Bulletin, 2007, 42(4): 696–706 https://doi.org/10.1016/j.materresbull.2006.07.017
30
Yu J G, Yu J C, Ho W K, et al.. Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New Journal of Chemistry, 2002, 26(5): 607–613 https://doi.org/10.1039/b200964a
31
Thongtem T, Phuruangrat A, Thongtem S. Preparation and characterization of nanocrystalline SrWO4 using cyclic microwave radiation. Current Applied Physics, 2008, 8(2): 189–197 https://doi.org/10.1016/j.cap.2007.08.002
32
Zhang H, Fan X, Quan X, et al.. Graphene sheets grafted Ag@AgCl hybrid with enhanced plasmonic photocatalytic activity under visible light. Environmental Science & Technology, 2011, 45(13): 5731–5736 https://doi.org/10.1021/es2002919
pmid: 21663048
33
Feng X, Guo H, Patel K, et al.. High performance, recoverable Fe3O4–ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chemical Engineering Journal, 2014, 244: 327–334 https://doi.org/10.1016/j.cej.2014.01.075