A cubic Prussian blue (PB) with the hollow interior was successfully synthesized by direct dissociation followed by a controlled self-etching process. The etching process also made hollow Prussian blue (HPB) a porous structure. SEM, TEM and XRD were employed to confirm the structure and morphology of the prepared materials. Then HPB and chitosan (CS) were deposited on a glassy carbon electrode (GCE), used to determine H2O2. The amperometric performance of HPB/CS/GCE was investigated. It was found that the special structure of HPB exhibits enhanced performance in the H2O2 sensing.
. [J]. Frontiers of Materials Science, 2017, 11(2): 147-154.
Qinglin SHENG, Dan ZHANG, Yu SHEN, Jianbin ZHENG. Synthesis of hollow Prussian blue cubes as an electrocatalyst for the reduction of hydrogen peroxide. Front. Mater. Sci., 2017, 11(2): 147-154.
Luo X L, Xu J J, Zhao W, et al.. A novel glucose ENFET based on the special reactivity of MnO2 nanoparticles. Biosensors & Bioelectronics, 2004, 19(10): 1295–1300 https://doi.org/10.1016/j.bios.2003.11.019
pmid: 15046762
2
Cui X, Liu G, Lin Y. Biosensors based on carbon nanotubes/nickel hexacyanoferrate/glucose oxidase nanocomposites. Journal of Biomedical Nanotechnology, 2005, 1(3): 320–327 https://doi.org/10.1166/jbn.2005.038
3
Lian W P, Wang L, Song Y H, et al.. A hydrogen peroxide sensor based on electrochemically roughened silver electrodes. Electrochimica Acta, 2009, 54(18): 4334–4339 https://doi.org/10.1016/j.electacta.2009.02.106
4
Wang Q M, Niu H L, Mao C J, et al.. Facile synthesis of trilaminar core–shell Ag@C@Ag nanospheres and their application for H2O2 detection. Electrochimica Acta, 2014, 127: 349–354 https://doi.org/10.1016/j.electacta.2014.02.051
5
Shu X, Chen Y, Yuan H, et al.. H2O2 sensor based on the room-temperature phosphorescence of nano TiO2/SiO2 composite. Analytical Chemistry, 2007, 79(10): 3695–3702 https://doi.org/10.1021/ac0624142
pmid: 17444612
6
Krishnan V, Xidis A L, Neff V D. Prussian blue solid-state films and membranes as potassium ion-selective electrodes. Analytica Chimica Acta, 1990, 239: 7–12 https://doi.org/10.1016/S0003-2670(00)83828-3
7
Kulesza P J, Miecznikowski K, Malik M A, et al.. Electrochemical preparation and characterization of hybrid films composed of Prussian blue type metal hexacyanoferrate and conducting polymer. Electrochimica Acta, 2001, 46(26–27): 4065–4073 https://doi.org/10.1016/S0013-4686(01)00687-9
8
Itaya K, Shoji N, Uchida I. Catalysis of the reduction of molecular oxygen to water at prussian blue modified electrodes. Journal of the American Chemical Society, 1984, 106(12): 3423–3429 https://doi.org/10.1021/ja00324a007
9
Chen W, Cai S, Ren Q Q, et al.. Recent advances in electrochemical sensing for hydrogen peroxide: a review. Analyst, 2012, 137(1): 49–58 https://doi.org/10.1039/C1AN15738H
pmid: 22081036
10
Pandey P C, Pandey A K, Chauhan D S. Nanocomposite of Prussian blue based sensor for l-cysteine: Synergetic effect of nanostructured gold and palladium on electrocatalysis. Electrochimica Acta, 2012, 74: 23–31 https://doi.org/10.1016/j.electacta.2012.03.179
11
Karyakin A A, Puganova E A, Budashov I A, et al.. Prussian blue based nanoelectrode arrays for H2O2 detection. Analytical Chemistry, 2004, 76(2): 474–478 https://doi.org/10.1021/ac034859l
pmid: 14719900
12
O’Halloran M P, Pravda M, Guilbault G G. Prussian Blue bulk modified screen-printed electrodes for H2O2 detection and for biosensors. Talanta, 2001, 55(3): 605–611
13
Zhu X, Niu X, Zhao H, et al.. Doping ionic liquid into Prussian blue-multiwalled carbon nanotubes modified screen-printed electrode to enhance the nonenzymatic H2O2 sensing performance. Sensors and Actuators B: Chemical, 2014, 195(5): 274–280 https://doi.org/10.1016/j.snb.2014.01.052
14
Karyakin A A, Gitelmacher V O, Karyakina E E. A high-sensitive glucose amperometric biosensor based on Prussian blue modified electrodes. Analytical Letters, 1994, 27(15): 2861–2869 https://doi.org/10.1080/00032719408000297
15
Jin E, Lu X, Cui L, et al.. Fabrication of graphene/prussian blue composite nanosheets and their electrocatalytic reduction of H2O2. Electrochimica Acta, 2010, 55(24): 7230–7234 https://doi.org/10.1016/j.electacta.2010.07.029
16
Zhang W, Wang L, Zhang N, et al.. Functionalization of single-walled carbon nanotubes with cubic prussian blue and its application for amperometric sensing. Electroanalysis, 2009, 21(21): 2325–2330 https://doi.org/10.1002/elan.200904690
Liang G, Xu J, Wang X. Synthesis and characterization of organometallic coordination polymer nanoshells of Prussian blue using miniemulsion periphery polymerization (MEPP). Journal of the American Chemical Society, 2009, 131(15): 5378–5379 https://doi.org/10.1021/ja900516a
pmid: 19331411
19
Wei C, Cheng C, Zhao J, et al.. NiS hollow spheres for high-performance supercapacitors and non-enzymatic glucose sensors. Chemistry — An Asian Journal, 2015, 10(3): 679–686 https://doi.org/10.1002/asia.201403198
pmid: 25648528
20
Meek S T, Greathouse J A, Allendorf M D. Metal-organic frameworks: a rapidly growing class of versatile nanoporous materials. Advanced Materials, 2011, 23(2): 249–267 https://doi.org/10.1002/adma.201002854
pmid: 20972981
21
Yang J, Cho M, Lee Y. Synthesis of hierarchical NiCo2O4 hollow nanorods via sacrificial-template accelerate hydrolysis for electrochemical glucose oxidation. Biosensors & Bioelectronics, 2016, 75: 15–22 https://doi.org/10.1016/j.bios.2015.08.008
pmid: 26281005
22
Chen D L, Cao Y, Chen Y, et al.. Rapid synthesis of hollow Ni(OH)2 with low-crystallinity for the electrochemical detection of ascorbic acid with high sensitivity. RSC Advances, 2016, 6(49): 43598–43604 https://doi.org/10.1039/C6RA05923F
23
Yang Y, Du J J, Luo L M, et al.. Facile aqueous-phase synthesis and electrochemical properties of novel PtPd hollow nanocatalysts. Electrochimica Acta, 2016, 212: 966–972 https://doi.org/10.1016/j.electacta.2016.07.085
24
Zhang L, Wu H B, Lou X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity. Journal of the American Chemical Society, 2013, 135(29): 10664–10672 https://doi.org/10.1021/ja401727n
pmid: 23805894
25
Tang X, Liu Y, Hou H, et al.. Electrochemical determination of L-Tryptophan, L-Tyrosine and L-Cysteine using electrospun carbon nanofibers modified electrode. Talanta, 2010, 80(5): 2182–2186 https://doi.org/10.1016/j.talanta.2009.11.027
pmid: 20152470
26
Zhang J, Li J, Yang F, et al.. Preparation of Prussian blue@Pt nanoparticles/carbon nanotubes composite material for efficient determination of H2O2. Sensors and Actuators B: Chemical, 2009, 143(1): 373–380 https://doi.org/10.1016/j.snb.2009.08.018
27
Wang Y T, Yu L, Zhu Z Q, et al.. Improved enzyme immobilization for enhanced bioelectrocatalytic activity of glucose sensor. Sensors and Actuators B: Chemical, 2009, 136(2): 332–337 https://doi.org/10.1016/j.snb.2008.12.049
28
Shen Q, Jiang J, Fan M, et al.. Prussian blue hollow nanostructures: Sacrificial template synthesis and application in hydrogen peroxide sensing. Journal of Electroanalytical Chemistry, 2014, 712(2): 132–138 https://doi.org/10.1016/j.jelechem.2013.11.008
29
Keihan A H, Sajjadi S. Improvement of the electrochemical and electrocatalytic behavior of Prussian blue/carbon nanotubes composite via ionic liquid treatment. Electrochimica Acta, 2013, 113: 803–809 https://doi.org/10.1016/j.electacta.2013.07.063
30
Wang L, Ye Y, Zhu H, et al.. Controllable growth of Prussian blue nanostructures on carboxylic group-functionalized carbon nanofibers and its application for glucose biosensing. Nanotechnology, 2012, 23(45): 455502 https://doi.org/10.1088/0957-4484/23/45/455502
pmid: 23090569
31
Li Y, Zheng J B, Sheng Q L, et al.. Synthesis of Ag@AgCl nanoboxes, and their application to electrochemical sensing of hydrogen peroxide at very low potential. Microchimica Acta, 2015, 182(1–2): 61–68 https://doi.org/10.1007/s00604-014-1272-z
32
Wang J P, Gao H, Sun F L, et al.. Nanoporous PtAu alloy as an electrochemical sensor for glucose and hydrogen peroxide. Sensors and Actuators B: Chemical, 2014, 191(2): 612–618 https://doi.org/10.1016/j.snb.2013.10.034
Liu S, Yu B, Li F, et al.. Coaxial electrospinning route to prepare Au-loading SnO2 hollow microtubes for non-enzymatic detection of H2O2. Electrochimica Acta, 2014, 141: 161–166 https://doi.org/10.1016/j.electacta.2014.07.033
35
Nie G D, Lu X F, Lei J Y, et al.. Sacrificial template-assisted fabrication of palladium hollow nanocubes and their application in electrochemical detection toward hydrogen peroxide. Electrochimica Acta, 2013, 99: 145–151 https://doi.org/10.1016/j.electacta.2013.03.066