1. Research Institute for New Materials Technology, Chongqing University of Arts and Sciences, Chongqing 402160, China 2. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
TiO2 is active only in the ultraviolet region. To enhance the active ability, a combined method consisting of the anodic oxidation method and the hydrothermal method was developed to prepare highly ordered Ag–TiO2 nanocomposited arrays. The anodic oxidation was used to synthesize amorphous nanotubes with high chemical activity that subsequently served as highly ordered templates in preparing the final sample. The amorphous nanotubes got converted to highly ordered Ag–TiO2 (anatase) arrays in the silver nitrate & glucose aqueous solution via hydrothermal treatment. SEM and TEM results show that the Ag–TiO2 nanocomposite was composed of a large number of Ag nanoparticles and anatase TiO2 nanoparticles, and the morphology of those at the top of the arrays was found different from that of its trunk. The morphology evolution mechanism of the obtained sample was discussed. It is also revealed that the Ag–TiO2 nanocomposite has high visible-light photocatalytic activity.
Yin H, Wada Y, Kitamura T, et al.. Hydrothermal synthesis of nanosized anatase and rutile TiO2 using amorphous phase TiO2. Journal of Materials Chemistry, 2001, 11(6): 1694–1703 https://doi.org/10.1039/b008974p
2
Lapides A M, Ashford D L, Hanson K, et al.. Stabilization of a ruthenium(II) polypyridyl dye on nanocrystalline TiO2 by an electropolymerized overlayer. Journal of the American Chemical Society, 2013, 135(41): 15450–15458 https://doi.org/10.1021/ja4055977
pmid: 24099001
3
Durupthy O, Bill J, Aldinger F. Bioinspired synthesis of crystalline TiO2: effect of amino acids on nanoparticles structure and shape. Crystal Growth & Design, 2007, 7(12): 2696–2704 https://doi.org/10.1021/cg060405g
4
Nguyen C K, Cha H G, Kang Y S. Axis-oriented, anatase TiO2 single crystals with dominant 001 and 100 facets. Crystal Growth & Design, 2011, 11(9): 3947–3953 https://doi.org/10.1021/cg200815t
5
Tong H, Ouyang S, Bi Y, et al.. Nano-photocatalytic materials: possibilities and challenges. Advanced Materials, 2012, 24(2): 229–251 https://doi.org/10.1002/adma.201102752
pmid: 21972044
6
Reyes-Coronado D, Rodríguez-Gattorno G, Espinosa-Pesqueira M E, et al.. Phase-pure TiO2 nanoparticles: anatase, brookite and rutile. Nanotechnology, 2008, 19(14): 145605 https://doi.org/10.1088/0957-4484/19/14/145605
pmid: 21817764
7
Peng Y, Huang G, Huang W. Visible-light absorption and photocatalytic activity of Cr-doped TiO2 nanocrystal films. Advanced Powder Technology, 2012, 23(1): 8–12 https://doi.org/10.1016/j.apt.2010.11.006
8
Waterhouse G I N, Wahab A K, Al-Oufi M, et al.. Hydrogen production by tuning the photonic band gap with the electronic band gap of TiO2. Scientific Reports, 2013, 3: 2849 (5 pages) doi:10.1038/srep02849
9
Kisch H. Semiconductor photocatalysis — mechanistic and synthetic aspects. Angewandte Chemie International Edition, 2013, 52(3): 812–847 https://doi.org/10.1002/anie.201201200
pmid: 23212748
10
Chen X, Burda C. The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials. Journal of the American Chemical Society, 2008, 130(15): 5018–5019 https://doi.org/10.1021/ja711023z
pmid: 18361492
11
De Trizio L, Buonsanti R, Schimpf A M, et al.. Nb-doped colloidal TiO2 nanocrystals with tunable infrared absorption. Chemistry of Materials, 2013, 25(16): 3383–3390 https://doi.org/10.1021/cm402396c
12
Sacco O, Vaiano V, Han C, et al.. Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Applied Catalysis B: Environmental, 2015, 164: 462–474 https://doi.org/10.1016/j.apcatb.2014.09.062
13
Spadavecchia F, Cappelletti G, Ardizzone S, et al.. Solar photoactivity of nano-N-TiO2 from tertiary amine: role of defects and paramagnetic species. Applied Catalysis B: Environmental, 2010, 96(3‒4): 314–322 https://doi.org/10.1016/j.apcatb.2010.02.027
14
Lee W J, Lee J M, Kochuveedu S T, et al.. Biomineralized N-doped CNT/TiO2 core/shell nanowires for visible light photocatalysis. ACS Nano, 2012, 6(1): 935–943 https://doi.org/10.1021/nn204504h
pmid: 22195985
15
Lee H U, Lee G, Park J C, et al.. Efficient visible-light responsive TiO2 nanoparticles incorporated magnetic carbon photocatalysts. Chemical Engineering Journal, 2014, 240: 91–98 https://doi.org/10.1016/j.cej.2013.11.054
16
Wu F, Hu X, Fan J, et al.. Photocatalytic activity of Ag/TiO2 nanotube arrays enhanced by surface plasmon resonance and application in hydrogen evolution by water splitting. Plasmonics, 2013, 8(2): 501–508 https://doi.org/10.1007/s11468-012-9418-5
17
Liang Y, Wang C, Kei C, et al.. Photocatalysis of Ag-loaded TiO2 nanotube arrays formed by atomic layer deposition. The Journal of Physical Chemistry C, 2011, 115(19): 9498–9502 https://doi.org/10.1021/jp202111p
18
Jiang Y, Zheng B, Du J, et al.. Electrophoresis deposition of Ag nanoparticles on TiO2 nanotube arrays electrode for hydrogen peroxide sensing. Talanta, 2013, 112(15): 129–135 https://doi.org/10.1016/j.talanta.2013.03.015
pmid: 23708548
19
Yang C, Balakrishnan N, Bhethanabotla V R, et al.. Interplay between subnanometer Ag and Pt clusters and anatase TiO2 (101) surface: Implications for catalysis and photocatalysis. The Journal of Physical Chemistry C, 2014, 118(9): 4702–4714 https://doi.org/10.1021/jp4112525
20
Tanaka A, Hashimoto K, Kominami H. Visible-light-induced hydrogen and oxygen formation over Pt/Au/WO3 photocatalyst utilizing two types of photoabsorption due to surface plasmon resonance and band-gap excitation. Journal of the American Chemical Society, 2014, 136(2): 586–589 https://doi.org/10.1021/ja410230u
pmid: 24386964
21
Long R, Prezhdo O V. Instantaneous generation of charge-separated state on TiO2 surface sensitized with plasmonic nanoparticles. Journal of the American Chemical Society, 2014, 136(11): 4343–4354 https://doi.org/10.1021/ja5001592
pmid: 24568726
22
Huang Z A, Sun Q, Lv K, et al.. Effect of contact interface between TiO2 and g-C3N4 on the photoreactivity of g-C3N4/TiO2 photocatalyst: (001) vs (101) facets of TiO2. Applied Catalysis B: Environmental, 2015, 164: 420–427 https://doi.org/10.1016/j.apcatb.2014.09.043
23
Wu L, Li F, Xu Y, et al.. Plasmon-induced photoelectrocatalytic activity of Au nanoparticles enhanced TiO2 nanotube arrays electrodes for environmental remediation. Applied Catalysis B: Environmental, 2015, 164: 217–224 https://doi.org/10.1016/j.apcatb.2014.09.029
24
Shi L, Liang L, Ma J, et al.. Enhanced photocatalytic activity over the Ag2O–g-C3N4 composite under visible light. Catalysis Science & Technology, 2014, 4(3): 758 https://doi.org/10.1039/c3cy00871a
25
Zhou W, Liu H, Wang J, et al.. Ag2O/TiO2 nanobelts heterostructure with enhanced ultraviolet and visible photocatalytic activity. ACS Applied Materials & Interfaces, 2010, 2(8): 2385–2392 https://doi.org/10.1021/am100394x
pmid: 20735112
26
Sarkar D, Ghosh C K, Mukherjee S, et al.. Three dimensional Ag2O/TiO2 type-II (p–n) nanoheterojunctions for superior photocatalytic activity. ACS Applied Materials & Interfaces, 2013, 5(2): 331–337 https://doi.org/10.1021/am302136y
pmid: 23245288
27
Wang Y, Zhang Y N, Zhao G, et al.. Design of a novel Cu2O/TiO2/carbon aerogel electrode and its efficient electrosorption-assisted visible light photocatalytic degradation of 2,4,6-trichlorophenol. ACS Applied Materials & Interfaces, 2012, 4(8): 3965–3972 https://doi.org/10.1021/am300795w
pmid: 22780307
28
Liao Y, Que W, Zhong P, et al.. A facile method to crystallize amorphous anodized TiO2 nanotubes at low temperature. ACS Applied Materials & Interfaces, 2011, 3(7): 2800–2804 https://doi.org/10.1021/am200685s
pmid: 21675751
29
Huo K, Wang H, Zhang X, et al.. Heterostructured TiO2 nanoparticles/nanotube arrays: in situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem, 2012, 77(4): 323–329 https://doi.org/10.1002/cplu.201200024
30
Zhao C, Zhu D, Cao S. Amorphous TiO2 nanotube-derived synthesis of highly ordered anatase TiO2 nanorod arrays. Superlattices and Microstructures, 2016, 90: 257–264 https://doi.org/10.1016/j.spmi.2015.12.037
31
Wang D, Liu L, Zhang F, et al.. Spontaneous phase and morphology transformations of anodized titania nanotubes induced by water at room temperature. Nano Letters, 2011, 11(9): 3649–3655 https://doi.org/10.1021/nl2015262
pmid: 21786788
32
Sun X M, Li Y D. Ag@C core/shell structured nanoparticles: controlled synthesis, characterization, and assembly. Langmuir, 2005, 21(13): 6019‒6024 https://doi.org/10.1021/la050193+
33
Spanhel L, Weller H, Henglein A. Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles. Journal of the American Chemical Society, 1987, 109(22): 6632–6635 https://doi.org/10.1021/ja00256a012
34
Wang M, Sun L, Lin Z, et al.. p–n Heterojunction photoelectrodes composed of Cu2O-loaded TiO2 nanotube arrays with enhanced photoelectrochemical and photoelectrocatalytic activities. Energy & Environmental Science, 2013, 6(4): 1211–1220 https://doi.org/10.1039/c3ee24162a
35
Scanlon D O, Dunnill C W, Buckeridge J, et al.. Band alignment of rutile and anatase TiO2. Nature Materials, 2013, 12(9): 798–801 https://doi.org/10.1038/nmat3697
pmid: 23832124
36
Zhao C, Shu X, Zhu D C, et al.. High visible light photocatalytic property of Co2+-doped TiO2 nanoparticles with mixed phases. Superlattices and Microstructures, 2015, 88: 32–42