1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China 2. National Engineering Center for Corrosion Control, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
Influence of glucose on corrosion of biomedical Mg–1.35Ca alloy was made using hydrogen evolution, pH and electrochemical polarization in isotonic saline solution. The corrosion morphologies, compositions and structures were probed by virtue of SEM, EDS, FTIR, XRD and XPS. Results indicate that the glucose accelerated the corrosion of the alloy. The elemental Ca has no visible effect on the corrosion mechanism of glucose for the Mg–1.35Ca alloy in comparison with pure Mg. In addition, the presence of CO2 has beneficial effect against corrosion due to the formation of a layer of carbonate-containing products.
Zeng R C, Qi W C, Cui H Z, et al.. In vitro corrosion of as-extruded Mg–Ca alloys — The influence of Ca concentration. Corrosion Science, 2015, 96: 23–31 https://doi.org/10.1016/j.corsci.2015.03.018
2
Cui W, Beniash E, Gawalt E , et al.. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition. Acta Biomaterialia, 2013, 9(10): 8650–8659 https://doi.org/10.1016/j.actbio.2013.06.031
pmid: 23816653
3
Hort N, Huang Y, Fechner D , et al.. Magnesium alloys as implant materials — principles of property design for Mg–RE alloys. Acta Biomaterialia, 2010, 6(5): 1714–1725 https://doi.org/10.1016/j.actbio.2009.09.010
pmid: 19788945
Chen Y Q, Zhao S, Chen M Y , et al.. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corrosion Science, 2015, 96: 67–73 https://doi.org/10.1016/j.corsci.2015.03.020
6
Zberg B, Uggowitzer P J, Löffler J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891 https://doi.org/10.1038/nmat2542
pmid: 19783982
7
Peng Q, Guo J, Fu H , et al.. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Scientific Reports, 2014, 4(1): 3620 https://doi.org/10.1038/srep03620
pmid: 24401851
8
Zeng R, Dietzel W, Witte F , et al.. Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10(8): B3–B14 https://doi.org/10.1002/adem.200800035
9
Ascencio M, Pekguleryuz M, Omanovic S . An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time. Corrosion Science, 2014, 87: 489–503 https://doi.org/10.1016/j.corsci.2014.07.015
10
Cui L Y, Zeng R C, Guan S K, et al.. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg–Ca alloys: The influence of porosity. Journal of Alloys and Compounds, 2017, 695: 2464–2476 https://doi.org/10.1016/j.jallcom.2016.11.146
11
Cui L Y, Gao S D, Li P P, et al.. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95 https://doi.org/10.1016/j.corsci.2017.01.025
12
Asl S K F , Nemeth S , Tan M J . Hydrothermally deposited protective and bioactive coating for magnesium alloys for implant application. Surface and Coatings Technology, 2014, 258: 931–937 https://doi.org/10.1016/j.surfcoat.2014.07.055
13
Doepke A, Kuhlmann J, Guo X , et al.. A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy. Acta Biomaterialia, 2013, 9(11): 9211–9219 https://doi.org/10.1016/j.actbio.2013.07.011
pmid: 23871945
14
Choudhary L, Singh Raman R K. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomaterialia, 2012, 8(2): 916–923 https://doi.org/10.1016/j.actbio.2011.10.031
pmid: 22075121
15
Zeng R C, Cui L Y, Jiang K, et al.. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 2016, 8(15): 10014–10028 https://doi.org/10.1021/acsami.6b00527
pmid: 27022831
16
Mueller W D, Lucia Nascimento M, Lorenzo de Mele M F. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomaterialia, 2010, 6(5): 1749–1755 https://doi.org/10.1016/j.actbio.2009.12.048
pmid: 20051271
17
Xin Y, Hu T, Chu P K . Influence of test solutions on in vitro studies of biomedical magnesium alloys. Journal of the Electrochemical Society, 2010, 157(7): C238 https://doi.org/10.1149/1.3421651
18
Yang L, Zhang E. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Materials Science and Engineering C, 2009, 29(5): 1691–1696 https://doi.org/10.1016/j.msec.2009.01.014
19
Xin Y, Hu T, Chu P K . In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459 https://doi.org/10.1016/j.actbio.2010.12.004
pmid: 21145436
20
Cui L Y, Hu Y, Zeng R C , et al.. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science and Technology, 2017, doi: 10.1016/j.jmst.2017.01.005 https://doi.org/10.1016/j.jmst.2017.01.005
21
Zeng R C, Hu Y, Guan S K , et al.. Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corrosion Science, 2014, 86: 171–182 https://doi.org/10.1016/j.corsci.2014.05.006
22
Wang L, Shinohara T, Zhang B P . Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010, 496(1–2): 500–507 https://doi.org/10.1016/j.jallcom.2010.02.088
23
Xin Y, Huo K, Tao H , et al.. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomaterialia, 2008, 4(6): 2008–2015 https://doi.org/10.1016/j.actbio.2008.05.014
pmid: 18571486
24
Rettig R, Virtanen S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2009, 88(2): 359–369 https://doi.org/10.1002/jbm.a.31887
pmid: 18286623
25
Heakal F E-T, Fekry A M, Fatayerji M Z. Electrochemical behavior of AZ91D magnesium alloy in phosphate medium — part I. Effect of pH. Journal of Applied Electrochemistry, 2009, 39(5): 583–591 https://doi.org/10.1007/s10800-008-9696-y
26
Wang J, Smith C E, Sankar J, et al.. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regenerative Biomaterials, 2015, 2(1): 59–69 https://doi.org/10.1093/rb/rbu015
pmid: 26816631
27
Shayeb H A E , Sawy E N E . Corrosion behaviour of pure Mg, AS31 and AZ91 in buffered and unbuffered sulphate and chloride solutions. Corrosion Engineering, Science and Technology, 2011, 46(4): 481–492 https://doi.org/10.1179/147842209X12520554108992
28
Yang L J, Wei Y H, Hou L F, et al.. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corrosion Science, 2010, 52(2): 345–351 https://doi.org/10.1016/j.corsci.2009.09.020
29
Kirkland N T, Lespagnol J, Birbilis N , et al.. A survey of bio-corrosion rates of magnesium alloys. Corrosion Science, 2010, 52(2): 287–291 https://doi.org/10.1016/j.corsci.2009.09.033
30
Yamamoto A, Hiromoto S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering C, 2009, 29(5): 1559–1568 https://doi.org/10.1016/j.msec.2008.12.015
31
Yang L, Hort N, Willumeit R , et al.. Effects of corrosion environment and proteins on magnesium corrosion. Corrosion Engineering, Science and Technology, 2012, 47(5): 335–339 https://doi.org/10.1179/1743278212Y.0000000024
32
Liu C L, Wang Y J, Zeng R C, et al.. In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corrosion Science, 2010, 52(10): 3341–3347 https://doi.org/10.1016/j.corsci.2010.06.003
33
Rettig R, Virtanen S. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2008, 85(1): 167–175 https://doi.org/10.1002/jbm.a.31550
pmid: 17688266
34
Mueller W D, de Mele M F, Nascimento M L, et al.. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. Journal of Biomedical Materials Research Part A, 2009, 90(2): 487–495 https://doi.org/10.1002/jbm.a.32106
pmid: 18563809
Zeng R C, Li X T, Li S Q, et al.. In vitro degradation of pure Mg in response to glucose. Scientific Reports, 2015, 5(1): 13026 https://doi.org/10.1038/srep13026
pmid: 26264413
Messer R L, Tackas G, Mickalonis J , et al.. Corrosion of machined titanium dental implants under inflammatory conditions. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 2009, 88(2): 474–481 https://doi.org/10.1002/jbm.b.31162
pmid: 18561292
39
Kim D J, Xun P, Liu K , et al.. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care, 2010, 33(12): 2604–2610 https://doi.org/10.2337/dc10-0994
pmid: 20807870
40
Chaudhary D P , Sharma R , Bansal D D . Implications of magnesium deficiency in type 2 diabetes: a review. Biological Trace Element Research, 2010, 134(2): 119–129 https://doi.org/10.1007/s12011-009-8465-z
pmid: 19629403
41
Yin P, Li N F, Lei T, et al.. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys. Journal of Materials Science: Materials in Medicine, 2013, 24(6): 1365–1373 https://doi.org/10.1007/s10856-013-4856-y
pmid: 23608999
42
Li Y, Hodgson P D, Wen C E. The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. Journal of Materials Science, 2011, 46(2): 365–371 https://doi.org/10.1007/s10853-010-4843-3
pmid: 22180142
Cui L Y, Zeng R C, Li S Q, et al.. Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Advances, 2016, 6(68): 63107–63116 https://doi.org/10.1039/C6RA08613F
45
Cui L Y, Zeng R C, Zhu X X, et al.. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10(2): 134–146 https://doi.org/10.1007/s11706-016-0332-1
46
Zeng R C, Zhang F, Lan Z D , et al.. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88: 452–459 https://doi.org/10.1016/j.corsci.2014.08.007
47
Zhang H, Luo R F, Li W J, et al.. Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys. Corrosion Science, 2015, 94: 305–315 https://doi.org/10.1016/j.corsci.2015.02.015
48
Zhang F, Zhang C L, Zeng R C, et al.. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg–Al layered double hydroxide coatings on magnesium alloys. Metals, 2016, 6(4): 85 https://doi.org/10.3390/met6040085
49
Liu L J, Li P P, Zou Y H, et al.. In vitro corrosion and antibacterial performance of polysiloxane and poly(acrylic acid)/gentamicin sulfate composite coatings on AZ31 alloy. Surface and Coatings Technology, 2016, 291: 7–14 https://doi.org/10.1016/j.surfcoat.2016.02.016
50
Ozturk S, Balkose D, Okur S , et al.. Effect of humidity on electrical conductivity of zinc stearate nanofilms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1–3): 67–74 https://doi.org/10.1016/j.colsurfa.2007.01.039
51
Garai S, Garai S, Jaisankar P , et al.. A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution. Corrosion Science, 2012, 60: 193–204 https://doi.org/10.1016/j.corsci.2012.03.036
52
Zeng R C, Liu Z G, Zhang F, et al.. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(32): 13049–13057 https://doi.org/10.1039/C4TA01341G
53
Zhao L, Liu Q, Gao R , et al.. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corrosion Science, 2014, 80: 177–183 https://doi.org/10.1016/j.corsci.2013.11.026
54
Zhou X, Yang H, Wang F . Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5% NaCl saturated Ca(OH)2 solution. Corrosion Science, 2012, 54: 193–200 https://doi.org/10.1016/j.corsci.2011.09.018
55
Tong J, Han X, Wang S , et al.. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (Solid-State 13C NMR, XPS, FT-IR, and XRD). Energy & Fuels, 2011, 25(9): 4006–4013 https://doi.org/10.1021/ef200738p
56
Zeng R C, Guo X, Liu C , et al.. Study on corrosion of medical Mg–Ca and Mg–Li–Ca alloys. Acta Metallurgica Sinica, 2011, 47(11): 1477–1482 (in Chinese)
57
Cui Z, Li X, Xiao K , et al.. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment. Corrosion Science, 2013, 76: 243–256 https://doi.org/10.1016/j.corsci.2013.06.047
58
Esmaily M, Shahabi-Navid M, Svensson J E , et al.. Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50. Corrosion Science, 2015, 90: 420–433 https://doi.org/10.1016/j.corsci.2014.10.040
59
Shahabi-Navid M, Esmaily M, Svensson J E , et al.. NaCl-induced atmospheric corrosion of the MgAl alloy AM50 — The influence of CO2. Clinical and Experimental Immunology, 2014, 161(6): C277–C287