Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2017, Vol. 11 Issue (3): 284-295   https://doi.org/10.1007/s11706-017-0391-y
  本期目录
In vitro corrosion of Mg--Ca alloy --- The influence of glucose content
Lan-Yue CUI1, Xiao-Ting LI1, Rong-Chang ZENG1(), Shuo-Qi LI1, En-Hou HAN2, Liang SONG1()
1. College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
2. National Engineering Center for Corrosion Control, Institute of Metals Research, Chinese Academy of Sciences, Shenyang 110016, China
 全文: PDF(709 KB)   HTML
Abstract

Influence of glucose on corrosion of biomedical Mg–1.35Ca alloy was made using hydrogen evolution, pH and electrochemical polarization in isotonic saline solution. The corrosion morphologies, compositions and structures were probed by virtue of SEM, EDS, FTIR, XRD and XPS. Results indicate that the glucose accelerated the corrosion of the alloy. The elemental Ca has no visible effect on the corrosion mechanism of glucose for the Mg–1.35Ca alloy in comparison with pure Mg. In addition, the presence of CO2 has beneficial effect against corrosion due to the formation of a layer of carbonate-containing products.

Key wordsmagnesium    corrosion    glucose    biomaterial
收稿日期: 2017-06-12      出版日期: 2017-08-24
Corresponding Author(s): Rong-Chang ZENG,Liang SONG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2017, 11(3): 284-295.
Lan-Yue CUI, Xiao-Ting LI, Rong-Chang ZENG, Shuo-Qi LI, En-Hou HAN, Liang SONG. In vitro corrosion of Mg--Ca alloy --- The influence of glucose content. Front. Mater. Sci., 2017, 11(3): 284-295.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-017-0391-y
https://academic.hep.com.cn/foms/CN/Y2017/V11/I3/284
Fig.1  
Glucose content /wt.% Ecorr /V vs. SCE icorr /(A·cm−2) ba /(mV·decade−1) bc /(mV·decade−1) Rp /(W·cm2)
0 −1.54 2.06×10 −5 115.99 161.84 1.42×10 6
2.5 −1.63 3.20×10 −5 122.30 129.18 8.52×10 5
5.0 −1.67 4.03×10 −5 134.47 133.49 7.22×10 5
Tab.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 Zeng R C, Qi  W C, Cui  H Z, et al.. In vitro corrosion of as-extruded Mg–Ca alloys — The influence of Ca concentration. Corrosion Science, 2015, 96: 23–31
https://doi.org/10.1016/j.corsci.2015.03.018
2 Cui W, Beniash  E, Gawalt E , et al.. Biomimetic coating of magnesium alloy for enhanced corrosion resistance and calcium phosphate deposition. Acta Biomaterialia, 2013, 9(10): 8650–8659
https://doi.org/10.1016/j.actbio.2013.06.031 pmid: 23816653
3 Hort N, Huang  Y, Fechner D , et al.. Magnesium alloys as implant materials — principles of property design for Mg–RE alloys. Acta Biomaterialia, 2010, 6(5): 1714–1725
https://doi.org/10.1016/j.actbio.2009.09.010 pmid: 19788945
4 Gu X, Zheng  Y, Cheng Y , et al.. In vitro corrosion and biocompatibility of binary magnesium alloys. Biomaterials, 2009, 30(4): 484–498
https://doi.org/10.1016/j.biomaterials.2008.10.021 pmid: 19000636
5 Chen Y Q, Zhao  S, Chen M Y , et al.. Sandwiched polydopamine (PDA) layer for titanium dioxide (TiO2) coating on magnesium to enhance corrosion protection. Corrosion Science, 2015, 96: 67–73
https://doi.org/10.1016/j.corsci.2015.03.020
6 Zberg B, Uggowitzer  P J, Löffler  J F. MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nature Materials, 2009, 8(11): 887–891
https://doi.org/10.1038/nmat2542 pmid: 19783982
7 Peng Q, Guo  J, Fu H , et al.. Degradation behavior of Mg-based biomaterials containing different long-period stacking ordered phases. Scientific Reports, 2014, 4(1): 3620
https://doi.org/10.1038/srep03620 pmid: 24401851
8 Zeng R, Dietzel  W, Witte F , et al.. Progress and challenge for magnesium alloys as biomaterials. Advanced Engineering Materials, 2008, 10(8): B3–B14
https://doi.org/10.1002/adem.200800035
9 Ascencio M, Pekguleryuz  M, Omanovic S . An investigation of the corrosion mechanisms of WE43 Mg alloy in a modified simulated body fluid solution: The influence of immersion time. Corrosion Science, 2014, 87: 489–503
https://doi.org/10.1016/j.corsci.2014.07.015
10 Cui L Y, Zeng  R C, Guan  S K, et al.. Degradation mechanism of micro-arc oxidation coatings on biodegradable Mg–Ca alloys: The influence of porosity. Journal of Alloys and Compounds, 2017, 695: 2464–2476
https://doi.org/10.1016/j.jallcom.2016.11.146
11 Cui L Y, Gao  S D, Li  P P, et al.. Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31. Corrosion Science, 2017, 118: 84–95
https://doi.org/10.1016/j.corsci.2017.01.025
12 Asl S K F ,  Nemeth S ,  Tan M J . Hydrothermally deposited protective and bioactive coating for magnesium alloys for implant application. Surface and Coatings Technology, 2014, 258: 931–937
https://doi.org/10.1016/j.surfcoat.2014.07.055
13 Doepke A, Kuhlmann  J, Guo X , et al.. A system for characterizing Mg corrosion in aqueous solutions using electrochemical sensors and impedance spectroscopy. Acta Biomaterialia, 2013, 9(11): 9211–9219
https://doi.org/10.1016/j.actbio.2013.07.011 pmid: 23871945
14 Choudhary L, Singh Raman  R K. Magnesium alloys as body implants: fracture mechanism under dynamic and static loadings in a physiological environment. Acta Biomaterialia, 2012, 8(2): 916–923
https://doi.org/10.1016/j.actbio.2011.10.031 pmid: 22075121
15 Zeng R C, Cui  L Y, Jiang  K, et al.. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly(L-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants. ACS Applied Materials & Interfaces, 2016, 8(15): 10014–10028
https://doi.org/10.1021/acsami.6b00527 pmid: 27022831
16 Mueller W D, Lucia Nascimento  M, Lorenzo de Mele  M F. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications. Acta Biomaterialia, 2010, 6(5): 1749–1755
https://doi.org/10.1016/j.actbio.2009.12.048 pmid: 20051271
17 Xin Y, Hu  T, Chu P K . Influence of test solutions on in vitro studies of biomedical magnesium alloys. Journal of the Electrochemical Society, 2010, 157(7): C238
https://doi.org/10.1149/1.3421651
18 Yang L, Zhang  E. Biocorrosion behavior of magnesium alloy in different simulated fluids for biomedical application. Materials Science and Engineering C, 2009, 29(5): 1691–1696
https://doi.org/10.1016/j.msec.2009.01.014
19 Xin Y, Hu  T, Chu P K . In vitro studies of biomedical magnesium alloys in a simulated physiological environment: a review. Acta Biomaterialia, 2011, 7(4): 1452–1459
https://doi.org/10.1016/j.actbio.2010.12.004 pmid: 21145436
20 Cui L Y, Hu  Y, Zeng R C , et al.. New insights into the effect of Tris-HCl and Tris on corrosion of magnesium alloy in presence of bicarbonate, sulfate, hydrogen phosphate and dihydrogen phosphate ions. Journal of Materials Science and Technology, 2017, doi:  10.1016/j.jmst.2017.01.005
https://doi.org/10.1016/j.jmst.2017.01.005
21 Zeng R C, Hu  Y, Guan S K , et al.. Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sulphate, hydrogen phosphate and dihydrogen phosphate ions in saline solution. Corrosion Science, 2014, 86: 171–182
https://doi.org/10.1016/j.corsci.2014.05.006
22 Wang L, Shinohara  T, Zhang B P . Influence of chloride, sulfate and bicarbonate anions on the corrosion behavior of AZ31 magnesium alloy. Journal of Alloys and Compounds, 2010, 496(1–2): 500–507
https://doi.org/10.1016/j.jallcom.2010.02.088
23 Xin Y, Huo  K, Tao H , et al.. Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment. Acta Biomaterialia, 2008, 4(6): 2008–2015
https://doi.org/10.1016/j.actbio.2008.05.014 pmid: 18571486
24 Rettig R, Virtanen  S. Composition of corrosion layers on a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2009, 88(2): 359–369
https://doi.org/10.1002/jbm.a.31887 pmid: 18286623
25 Heakal F E-T, Fekry  A M, Fatayerji  M Z. Electrochemical behavior of AZ91D magnesium alloy in phosphate medium — part I. Effect of pH. Journal of Applied Electrochemistry, 2009, 39(5): 583–591
https://doi.org/10.1007/s10800-008-9696-y
26 Wang J, Smith  C E, Sankar  J, et al.. Absorbable magnesium-based stent: physiological factors to consider for in vitro degradation assessments. Regenerative Biomaterials, 2015, 2(1): 59–69
https://doi.org/10.1093/rb/rbu015 pmid: 26816631
27 Shayeb H A E ,  Sawy E N E . Corrosion behaviour of pure Mg, AS31 and AZ91 in buffered and unbuffered sulphate and chloride solutions. Corrosion Engineering, Science and Technology, 2011, 46(4): 481–492
https://doi.org/10.1179/147842209X12520554108992
28 Yang L J, Wei  Y H, Hou  L F, et al.. Corrosion behaviour of die-cast AZ91D magnesium alloy in aqueous sulphate solutions. Corrosion Science, 2010, 52(2): 345–351
https://doi.org/10.1016/j.corsci.2009.09.020
29 Kirkland N T, Lespagnol  J, Birbilis N , et al.. A survey of bio-corrosion rates of magnesium alloys. Corrosion Science, 2010, 52(2): 287–291
https://doi.org/10.1016/j.corsci.2009.09.033
30 Yamamoto A, Hiromoto  S. Effect of inorganic salts, amino acids and proteins on the degradation of pure magnesium in vitro. Materials Science and Engineering C, 2009, 29(5): 1559–1568
https://doi.org/10.1016/j.msec.2008.12.015
31 Yang L, Hort  N, Willumeit R , et al.. Effects of corrosion environment and proteins on magnesium corrosion. Corrosion Engineering, Science and Technology, 2012, 47(5): 335–339
https://doi.org/10.1179/1743278212Y.0000000024
32 Liu C L, Wang  Y J, Zeng  R C, et al.. In vitro corrosion degradation behaviour of Mg–Ca alloy in the presence of albumin. Corrosion Science, 2010, 52(10): 3341–3347
https://doi.org/10.1016/j.corsci.2010.06.003
33 Rettig R, Virtanen  S. Time-dependent electrochemical characterization of the corrosion of a magnesium rare-earth alloy in simulated body fluids. Journal of Biomedical Materials Research Part A, 2008, 85(1): 167–175
https://doi.org/10.1002/jbm.a.31550 pmid: 17688266
34 Mueller W D, de Mele  M F, Nascimento  M L, et al.. Degradation of magnesium and its alloys: dependence on the composition of the synthetic biological media. Journal of Biomedical Materials Research Part A, 2009, 90(2): 487–495
https://doi.org/10.1002/jbm.a.32106 pmid: 18563809
35 Willumeit R, Feyerabend  F, Huber N . Magnesium degradation as determined by artificial neural networks. Acta Biomaterialia, 2013, 9(10): 8722–8729
https://doi.org/10.1016/j.actbio.2013.02.042 pmid: 23470548
36 Zeng R C, Li  X T, Li  S Q, et al.. In vitro degradation of pure Mg in response to glucose. Scientific Reports, 2015, 5(1): 13026
https://doi.org/10.1038/srep13026 pmid: 26264413
37 Hwang D, Wang  H L. Medical contraindications to implant therapy Part II: Relative contraindications. Implant Dentistry, 2007, 16(1): 13–23
https://doi.org/10.1097/ID.0b013e31803276c8 pmid: 17356368
38 Messer R L, Tackas  G, Mickalonis J , et al.. Corrosion of machined titanium dental implants under inflammatory conditions. Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 2009, 88(2): 474–481
https://doi.org/10.1002/jbm.b.31162 pmid: 18561292
39 Kim D J, Xun  P, Liu K , et al.. Magnesium intake in relation to systemic inflammation, insulin resistance, and the incidence of diabetes. Diabetes Care, 2010, 33(12): 2604–2610
https://doi.org/10.2337/dc10-0994 pmid: 20807870
40 Chaudhary D P ,  Sharma R ,  Bansal D D . Implications of magnesium deficiency in type 2 diabetes: a review. Biological Trace Element Research, 2010, 134(2): 119–129
https://doi.org/10.1007/s12011-009-8465-z pmid: 19629403
41 Yin P, Li  N F, Lei  T, et al.. Effects of Ca on microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Ca alloys. Journal of Materials Science: Materials in Medicine, 2013, 24(6): 1365–1373
https://doi.org/10.1007/s10856-013-4856-y pmid: 23608999
42 Li Y, Hodgson  P D, Wen  C E. The effects of calcium and yttrium additions on the microstructure, mechanical properties and biocompatibility of biodegradable magnesium alloys. Journal of Materials Science, 2011, 46(2): 365–371
https://doi.org/10.1007/s10853-010-4843-3 pmid: 22180142
43 Song G. Control of biodegradation of biocompatable magnesium alloys. Corrosion Science, 2007, 49(4): 1696–1701
https://doi.org/10.1016/j.corsci.2007.01.001
44 Cui L Y, Zeng  R C, Li  S Q, et al.. Corrosion resistance of layer-by-layer assembled polyvinylpyrrolidone/polyacrylic acid and amorphous silica films on AZ31 magnesium alloys. RSC Advances, 2016, 6(68): 63107–63116
https://doi.org/10.1039/C6RA08613F
45 Cui L Y, Zeng  R C, Zhu  X X, et al.. Corrosion resistance of biodegradable polymeric layer-by-layer coatings on magnesium alloy AZ31. Frontiers of Materials Science, 2016, 10(2): 134–146
https://doi.org/10.1007/s11706-016-0332-1
46 Zeng R C, Zhang  F, Lan Z D , et al.. Corrosion resistance of calcium-modified zinc phosphate conversion coatings on magnesium–aluminium alloys. Corrosion Science, 2014, 88: 452–459
https://doi.org/10.1016/j.corsci.2014.08.007
47 Zhang H, Luo  R F, Li  W J, et al.. Epigallocatechin gallate (EGCG) induced chemical conversion coatings for corrosion protection of biomedical MgZnMn alloys. Corrosion Science, 2015, 94: 305–315
https://doi.org/10.1016/j.corsci.2015.02.015
48 Zhang F, Zhang  C L, Zeng  R C, et al.. Corrosion resistance of the superhydrophobic Mg(OH)2/Mg–Al layered double hydroxide coatings on magnesium alloys. Metals, 2016, 6(4): 85
https://doi.org/10.3390/met6040085
49 Liu L J, Li  P P, Zou  Y H, et al.. In vitro corrosion and antibacterial performance of polysiloxane and poly(acrylic acid)/gentamicin sulfate composite coatings on AZ31 alloy. Surface and Coatings Technology, 2016, 291: 7–14
https://doi.org/10.1016/j.surfcoat.2016.02.016
50 Ozturk S, Balkose  D, Okur S , et al.. Effect of humidity on electrical conductivity of zinc stearate nanofilms. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 302(1–3): 67–74
https://doi.org/10.1016/j.colsurfa.2007.01.039
51 Garai S, Garai  S, Jaisankar P , et al.. A comprehensive study on crude methanolic extract of Artemisia pallens (Asteraceae) and its active component as effective corrosion inhibitors of mild steel in acid solution. Corrosion Science, 2012, 60: 193–204
https://doi.org/10.1016/j.corsci.2012.03.036
52 Zeng R C, Liu  Z G, Zhang  F, et al.. Corrosion of molybdate intercalated hydrotalcite coating on AZ31 Mg alloy. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(32): 13049–13057
https://doi.org/10.1039/C4TA01341G
53 Zhao L, Liu  Q, Gao R , et al.. One-step method for the fabrication of superhydrophobic surface on magnesium alloy and its corrosion protection, antifouling performance. Corrosion Science, 2014, 80: 177–183
https://doi.org/10.1016/j.corsci.2013.11.026
54 Zhou X, Yang  H, Wang F . Investigation on the inhibition behavior of a pentaerythritol glycoside for carbon steel in 3.5% NaCl saturated Ca(OH)2 solution. Corrosion Science, 2012, 54: 193–200
https://doi.org/10.1016/j.corsci.2011.09.018
55 Tong J, Han  X, Wang S , et al.. Evaluation of structural characteristics of Huadian oil shale kerogen using direct techniques (Solid-State 13C NMR, XPS, FT-IR, and XRD). Energy & Fuels, 2011, 25(9): 4006–4013
https://doi.org/10.1021/ef200738p
56 Zeng R C, Guo  X, Liu C , et al.. Study on corrosion of medical Mg–Ca and Mg–Li–Ca alloys. Acta Metallurgica Sinica, 2011, 47(11): 1477–1482 (in Chinese)
57 Cui Z, Li  X, Xiao K , et al.. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment. Corrosion Science, 2013, 76: 243–256
https://doi.org/10.1016/j.corsci.2013.06.047
58 Esmaily M, Shahabi-Navid  M, Svensson J E , et al.. Influence of temperature on the atmospheric corrosion of the Mg–Al alloy AM50. Corrosion Science, 2015, 90: 420–433
https://doi.org/10.1016/j.corsci.2014.10.040
59 Shahabi-Navid M, Esmaily  M, Svensson J E , et al.. NaCl-induced atmospheric corrosion of the MgAl alloy AM50 — The influence of CO2. Clinical and Experimental Immunology, 2014, 161(6): C277–C287
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed