Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2017, Vol. 11 Issue (3): 215-222   https://doi.org/10.1007/s11706-017-0392-x
  本期目录
A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction
Yu WU1, Liu YUAN1, Nai-an SHENG1, Zi-qi GU1, Wen-hao FENG1, Hai-yue YIN1, Yosry MORSI2, Xiu-mei MO1,3()
1. Key Laboratory of Textile Science & Technology (Ministry of Education), College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
2. Faculty of Engineering and Industrial Sciences, Swinburne University of Technology, Hawthorn, Vic 3122, Australia
3. Shandong International Biotechnology Park Development Co., Ltd., Yantai 264003, China
 全文: PDF(243 KB)   HTML
Abstract

Sodium alginate and carboxymethyl chitosan have been extensively applied in tissue engineering and other relative fields due to their low price and excellent biocompatibility. In this paper, we oxidized sodium alginate with sodium periodate to convert 1,2-hydroxyl groups into aldehyde groups to get aldehyde-sodium alginate (A-SA). Carboxymethyl chitosan was modified with ethylenediamine (ED) in the presence of water-soluble N-(3-Dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride (EDC) to introduce additional amino groups to get amino-carboxymethyl chitosan (A-CS). Upon mixing the A-SA and A-CS aqueous solutions together, a gel rapidly formed based on the Schiff’s base reaction between aldehyde groups in A-SA and amino groups in A-CS. FTIR analysis confirmed the characteristic peak of Schiff’s base group in the hydrogel. It was confirmed that the gelation time be dependent on the aldehyde group content in A-SA and amino group content in A-CS. The fasted hydrogel formation takes place within 10 min. The data of bonding strength and cytotoxicity measurement also showed that the hydrogel had good adhesion and biocompatibility. All these results support that this gel has the potential as soft tissue adhesive.

Key wordsoxidized sodium alginate    amino-carboxymethyl chitosan    tissue adhesive    Schiff’s base
收稿日期: 2017-05-14      出版日期: 2017-08-24
Corresponding Author(s): Xiu-mei MO   
 引用本文:   
. [J]. Frontiers of Materials Science, 2017, 11(3): 215-222.
Yu WU, Liu YUAN, Nai-an SHENG, Zi-qi GU, Wen-hao FENG, Hai-yue YIN, Yosry MORSI, Xiu-mei MO. A soft tissue adhesive based on aldehyde-sodium alginate and amino-carboxymethyl chitosan preparation through the Schiff reaction. Front. Mater. Sci., 2017, 11(3): 215-222.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-017-0392-x
https://academic.hep.com.cn/foms/CN/Y2017/V11/I3/215
Fig.1  
Fig.2  
Sample n(NaIO4)/n(SA unit) Oxidation degree /%
SA
A-SA-1 1:1 53.56
A-SA-2 6:5 63.69
A-SA-3 3:2 75.24
Tab.1  
Fig.3  
Fig.4  
Fig.5  
Sample Gelation time /min
A-SA-3/A-CS 5–10
A-SA-2/A-CS 15–20
A-SA-1/A-CS 15–20
A-SA-3/CS 15–20
A-SA-2/CS 20–25
A-SA-1/CS 20–25
Tab.2  
Fig.6  
Fig.7  
Sample Max stress /MPa Max strain /%
A-SA-3/A-CS 0.0219±0.0034 26.43±5.40
A-SA-2/A-CS 0.0098±0.0018 23.31±3.11
A-SA-1/A-CS 0.0024±0.0003 5.55±0.40
A-SA-3/CS 0.0022±0.0004 11.55±1.82
A-SA-2/CS 0.0033±0.0006 8.60±1.75
A-SA-1/CS 0.0015±0.0001 5.63±2.01
Tab.3  
Fig.8  
Fig.9  
1 Lloyd J D, Marque  M J 3rd, Kacprowicz  R F. Closure techniques. Emergency Medicine Clinics of North America, 2007, 25(1): 73–81
https://doi.org/10.1016/j.emc.2007.01.002 pmid: 17400073
2 Yang T L. Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. International Journal of Molecular Sciences, 2011, 12(3): 1936–1963
https://doi.org/10.3390/ijms12031936 pmid: 21673932
3 Ladewig K. Drug delivery in soft tissue engineering. Expert Opinion on Drug Delivery, 2011, 8(9): 1175–1188
https://doi.org/10.1517/17425247.2011.588698 pmid: 21679089
4 Tay C Y, Irvine  S A, Boey  F Y, et al.. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications. Small, 2011, 7(10): 1361–1378
https://doi.org/10.1002/smll.201100046 pmid: 21538867
5 Zhang F, He  C, Cao L , et al.. Fabrication of gelatin-hyaluronic acid hybrid scaffolds with tunable porous structures for soft tissue engineering. International Journal of Biological Macromolecules, 2011, 48(3): 474–481
https://doi.org/10.1016/j.ijbiomac.2011.01.012 pmid: 21255605
6 Ryu J H, Lee  Y, Kong W H , et al.. Catechol-functionalized chitosan/pluronic hydrogels for tissue adhesives and hemostatic materials. Biomacromolecules, 2011, 12(7): 2653–2659
https://doi.org/10.1021/bm200464x pmid: 21599012
7 Lee Y, Chung  H J, Yeo  S, et al.. Thermo-sensitive, injectable, and tissue adhesive sol–gel transition hyaluronic acid/pluronic composite hydrogels prepared from bio-inspired catechol-thiol reaction. Soft Matter, 2010, 6(5): 977–983
https://doi.org/10.1039/b919944f
8 Quinn J, Wells  G, Sutcliffe T , et al.. Tissue adhesive versus suture wound repair at 1 year: randomized clinical trial correlating early, 3-month, and 1-year cosmetic outcome. Annals of Emergency Medicine, 1998, 32(6): 645–649
https://doi.org/10.1016/S0196-0644(98)70061-7 pmid: 9832658
9 Chung H, Grubbs  R H. Rapidly cross-linkable DOPA containing terpolymer adhesives and PEG-based cross-linkers for biomedical applications. Macromolecules, 2012, 45(24): 9666–9673
https://doi.org/10.1021/ma3017986
10 Balakrishnan B, Banerjee  R. Biopolymer-based hydrogels for cartilage tissue engineering. Chemical Reviews, 2011, 111(8): 4453–4474
https://doi.org/10.1021/cr100123h pmid: 21417222
11 Smith T J, Kennedy  J E, Higginbotham  C L. Rheological and thermal characteristics of a two phase hydrogel system for potential wound healing applications. Journal of Materials Science, 2010, 45(11): 2884–2891
https://doi.org/10.1007/s10853-010-4278-x
12 Balakrishnan B, Jayakrishnan  A. Self-cross-linking biopolymers as injectable in situ forming biodegradable scaffolds. Biomaterials, 2005, 26(18): 3941–3951
https://doi.org/10.1016/j.biomaterials.2004.10.005 pmid: 15626441
13 Mo X, Iwata  H, Matsuda S , et al.. Soft tissue adhesive composed of modified gelatin and polysaccharides. Journal of Biomaterials Science Polymer Edition, 2000, 11(4): 341–351
https://doi.org/10.1163/156856200743742 pmid: 10903034
14 Yuan L, Wu  Y, Fang J , et al.. Modified alginate and gelatin cross-linked hydrogels for soft tissue adhesive. Artificial Cells, Nanomedicine, and Biotechnology, 2017, 45(1): 76–83
https://doi.org/10.3109/21691401.2015.1129622 pmid: 26855181
15 Gomez C, Rinaudo  M, Villar M . Oxidation of sodium alginate and characterization of the oxidized derivatives. Carbohydrate Polymers, 2007, 67(3): 296–304
https://doi.org/10.1016/j.carbpol.2006.05.025
16 Balakrishnan B, Mohanty  M, Umashankar P R , et al.. Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials, 2005, 26(32): 6335–6342
https://doi.org/10.1016/j.biomaterials.2005.04.012 pmid: 15919113
17 Geng X, Mo  X, Fan L , et al.. Hierarchically designed injectable hydrogel from oxidized dextran, amino gelatin and 4-arm poly(ethylene glycol)-acrylate for tissue engineering application. Journal of Materials Chemistry, 2012, 22(48): 25130–25139
https://doi.org/10.1039/c2jm34737g
18 Mo X, Iwata  H, Ikada Y . A tissue adhesives evaluated in vitro and in vivo analysis. Journal of Biomedical Materials Research Part A, 2010, 94(1): 326–332
https://doi.org/10.1002/jbm.a.32788 pmid: 20496438
19 Hoare D G, Olson  A, Koshland D E  Jr. The reaction of hydroxamic acids with water-soluble carbodiimides. A Lossen rearrangement. Journal of the American Chemical Society, 1968, 90(6): 1638–1643
https://doi.org/10.1021/ja01008a040 pmid: 5636802
20 Geng X H, Yuan  L, Mo X M . Oxidized dextran/amino gelatin/hyaluronic acid semi-interpenetrating network hydrogels for tissue engineering application. Advanced Materials Research, 2013, 627: 745–750
https://doi.org/10.4028/www.scientific.net/AMR.627.745
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed