Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2017, Vol. 11 Issue (4): 375-384   https://doi.org/10.1007/s11706-017-0399-3
  本期目录
Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants
Vahini RAJA, Senthil Kumar PUVANESWARAN, Karuthapandian SWAMINATHAN()
Department of Chemistry, VHNSN College, Virudhunagar-626001, Tamilnadu, India
 全文: PDF(509 KB)   HTML
Abstract

In the present study, novel Co3O4/NiO nanosponges designed for the photocatalytic degradation of organic contaminants were synthesized by a simple precipitation technique. The formation of sponge-like nanostructures was clearly evident through the TEM analysis. The photocatalytic efficiency was tested against rhodamine B (RhB) and congo red (CR) dye solutions. Co3O4/NiO nanosponges showed excellent and enhanced photocatalytic efficacy compared to those of Co3O4, NiO nanoparticles, and standards like TiO2 and ZnO. The influence of paramount important operational parameters was explored and the conditions for the best photocatalytic efficiency were optimized. The trapping experiment revealed that the reactive oxygen species (ROS) identified was ·OH radical. These findings certainly open up a new way for synthesizing a morphology dependent photocatalyst.

Key wordsCo3O4/NiO    nanosponges    photocatalytic efficacy    visible light
收稿日期: 2017-07-07      出版日期: 2017-11-29
Corresponding Author(s): Karuthapandian SWAMINATHAN   
 引用本文:   
. [J]. Frontiers of Materials Science, 2017, 11(4): 375-384.
Vahini RAJA, Senthil Kumar PUVANESWARAN, Karuthapandian SWAMINATHAN. Unique and hierarchically structured novel Co3O4/NiO nanosponges with superior photocatalytic activity against organic contaminants. Front. Mater. Sci., 2017, 11(4): 375-384.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-017-0399-3
https://academic.hep.com.cn/foms/CN/Y2017/V11/I4/375
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
Fig.13  
1 Tan G, Zhang  L, Ren H , et al.. Effects of pH on the hierarchical structures and photocatalytic performance of BiVO4 powders prepared via the microwave hydrothermal method. ACS Applied Materials & Interfaces, 2013, 5(11): 5186–5193
https://doi.org/10.1021/am401019m pmid: 23668183
2 Lei W, Portehault  D, Dimova R , et al.. Boron carbon nitride nanostructures from salt melts: tunable water-soluble phosphors. Journal of the American Chemical Society, 2011, 133(18): 7121–7127
https://doi.org/10.1021/ja200838c pmid: 21506566
3 Richardson S D . Water analysis: emerging contaminants and current issues. Analytical Chemistry, 2009, 81(12): 4645–4677
https://doi.org/10.1021/ac9008012 pmid: 19456142
4 Latha P, Dhanabackialakshmi  R, Kumar P S , et al.. Synergistic effects of trouble free and 100% recoverable CeO2/Nylon nanocomposite thin film for the photocatalytic degradation of organic contaminants. Separation and Purification Technology, 2016, 168: 124–133
https://doi.org/10.1016/j.seppur.2016.05.038
5 Babu S G, Vinoth  R, Narayana P S , et al.. Reduced graphene oxide wrapped Cu2O supported on C3N4: An efficient visible light responsive semiconductor photocatalyst. APL Materials, 2015, 3(10): 104415
https://doi.org/10.1063/1.4928286
6 Nezamzadeh-Ejhieh A ,  Banan Z . Sunlight assisted photodecolori-zation of crystal violet catalyzed by CdS nanoparticles embedded on zeolite A. Desalination, 2012, 284: 157–166
https://doi.org/10.1016/j.desal.2011.08.050
7 Bhatnagar A, Hogland  W, Marques M , et al.. An overview of the modification methods of activated carbon for its water treatment applications.Chemical Engineering Journal, 2013, 219:499–511
https://doi.org/10.1016/j.cej.2012.12.038
8 Khabashesku V N ,  Zimmerman J L ,  Margrave J L . Powder synthesis and characterization of amorphous carbon nitride. Chemistry of Materials, 2000, 12(11): 3264–3270
https://doi.org/10.1021/cm000328r
9 Zhang X, Wu  F, Deng N . Efficient photodegradation of dyes using light-induced self assembly TiO2/β-cyclodextrin hybrid nanoparticles under visible light irradiation. Journal of Hazardous Materials, 2011, 185(1): 117–123
https://doi.org/10.1016/j.jhazmat.2010.09.005 pmid: 20880630
10 Fan H J, Lu  C S, Lee  W L W, et al.. Mechanistic pathways differences between P25-TiO2 and Pt-TiO2 mediated CV photodegradation. Journal of Hazardous Materials, 2011, 185(1): 227–235
https://doi.org/10.1016/j.jhazmat.2010.09.022 pmid: 20943313
11 Ahmad R. Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 2009, 171(1–3): 767–773
https://doi.org/10.1016/j.jhazmat.2009.06.060 pmid: 19604639
12 Fujishima A, Honda  K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238(5358): 37–38
https://doi.org/10.1038/238037a0 pmid: 12635268
13 Kamat P V. Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chemical Reviews, 1993, 93(1): 267–300
https://doi.org/10.1021/cr00017a013
14 Hu Y, Gao  X, Yu L , et al.. Carbon-coated CdS petalous nanostructures with enhanced photostability and photocatalytic activity. Angewandte Chemie International Edition, 2013, 52(21): 5636–5639
https://doi.org/10.1002/anie.201301709 pmid: 23564707
15 Chen X, Shen  S, Guo L , et al.. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews, 2010, 110(11): 6503–6570
https://doi.org/10.1021/cr1001645 pmid: 21062099
16 Sasi B, Gopchandran  K G. Nanostructured mesoporous nickel oxide thin films. Nanotechnology, 2007, 18(11): 115613
https://doi.org/10.1088/0957-4484/18/11/115613
17 Bandara J, Yasomanee  J P. p-Type oxide semiconductors as hole collectors in dye-sensitized solid-state solar cells. Semiconductor Scienceand Technology, 2007, 22(2): 20–24 
https://doi.org/10.1088/0268-1242/22/2/004
18 Shi J, Guo  L. ABO3-based photocatalysts for water splitting. Progress in Natural Science: Materials International, 2012, 22(6): 592–615
https://doi.org/10.1016/j.pnsc.2012.12.002
19 Wan X, Yuan  M, Tie S L , et al.. Effects of catalyst characters on the photocatalytic activity and process of NiO nanoparticles in the degradation of methylene blue. Applied Surface Science, 2013, 277: 40–46
https://doi.org/10.1016/j.apsusc.2013.03.126
20 Fominykh K, Chernev  P, Zaharieva I , et al.. Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano, 2015, 9(5): 5180–5188
https://doi.org/10.1021/acsnano.5b00520 pmid: 25831435
21 Babu S G, Vinoth  R, Kumar D P , et al.. Influence of electron storing, transferring and shuttling assets of reduced graphene oxide at the interfacial copper doped TiO2 p-n heterojunction for increased hydrogen production. Nanoscale, 2015, 7(17): 7849–7857
https://doi.org/10.1039/C5NR00504C pmid: 25853995
22 Rubio-Marcos F, Manzano  C V, Reinosa  J J, et al.. Mechanism of Ni1−xZnxO formation by thermal treatments on NiO nanoparticles dispersed over ZnO. The Journal of Physical Chemistry C, 2011, 115(28): 13577–13583
https://doi.org/ 10.1021/jp201795y
23 Singh S A, Vemparala  B, Madras G . Adsorption kinetics of dyes and their mixtures with Co3O4–ZrO2 composites. Journal of Environmental Chemical Engineering, 2015, 3(4): 2684–2696
https://doi.org/10.1016/j.jece.2015.09.029
24 Wang G, Shen  X, Horvat J , et al.. Hydrothermal synthesis and optical, magnetic, and supercapacitance properties of nanoporous cobalt oxide nanorods. The Journal of Physical Chemistry C, 2009, 113(11): 4357–4361
https://doi.org/10.1021/jp8106149
25 Salavati-Niasari M ,  Mir N, Davar  F. Synthesis and characterization of Co3O4 nanorods by thermal decomposition of cobalt oxalate. Journal of Physics and Chemistry of Solids, 2009, 70(5): 847–852
https://doi.org/10.1016/j.jpcs.2009.04.006
26 Prakash K, Kumar  P S, Saravanakumar  K, et al.. Controllable synthesis of SnO2 photocatalyst with superior photocatalytic activity for the degradation of methylene blue dye solution. Journal of Experimental Nanoscience, 2016, 11(14): 1138–1155
https://doi.org/10.1080/17458080.2016.1188222
27 Narayan R V, Kanniah  V, Dhathathreyan A . Tuning size and catalytic activity of nano-clusters of cobalt oxide. Journal of Chemical Sciences, 2006, 118(2): 179–184
https://doi.org/10.1007/BF02708470
28 Zhang Y, Liu  Y, Fu S , et al.. Morphology-controlled synthesis of Co3O4 crystals by soft chemical method. Materials Chemistry and Physics, 2007, 104(1): 166–171
https://doi.org/10.1016/j.matchemphys.2007.03.003
29 Kumar P S, Karuthapandian  S, Umadevi M , et al.. Light induced synthesis of Sr/CdSe nanocomposite for the highly synergistic photodegradation of methylene blue dye solution. Materials Focus, 2016, 5(2): 128–136
https://doi.org/10.1166/mat.2016.1301
30 Kumar P S, Selvakumar  M, Babu S G , et al.. CdO nanospheres: Facile synthesis and bandgap modification for the superior photocatalytic activity. Materials Letters, 2015, 151: 45–48
https://doi.org/10.1016/j.matlet.2015.03.047
31 Kumar P S, Selvakumar  M, Babu S G , et al.. CuO/ZnO nanorods: An affordable efficient p-n heterojunction and morphology dependent photocatalytic activity against organic contaminants. Journal of Alloys and Compounds, 2017, 701: 562–573
https://doi.org/10.1016/j.jallcom.2017.01.126
32 Karthik P, Vinoth  R, Babu S G , et al.. Synthesis of highly visible light active TiO2-2-naphthol surface complex and its application in photocatalytic chromium(VI) reduction. RSC Advances, 2015, 5(50): 39752–39759
https://doi.org/10.1039/C5RA03831F
33 Kumar P S, Selvakumar  M, Bhagabati P , et al.. CdO/ZnO nanohybrids: facile synthesis and morphologically enhanced photocatalytic performance. RSC Advances, 2014, 4(62): 32977–32986
https://doi.org/10.1039/C4RA02502D
34 Karunakaran C, Senthilvelan  S, Karuthapandian S . Solar photooxidation of aniline on ZnO surfaces. Solar Energy Materials and Solar Cells, 2005, 89(4): 391–402
https://doi.org/10.1016/j.solmat.2005.01.008
35 Saravanakumar K, Kumar  P S, Kumar  J V, et al.. Controlled synthesis of plate like structured MoO3 and visible light induced degradation of rhodamine B dye solution. Energy and Environment Focus, 2016, 5(1): 50–57
https://doi.org/10.1166/eef.2016.1192
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed