Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2017, Vol. 11 Issue (4): 328-343   https://doi.org/10.1007/s11706-017-0401-0
  本期目录
Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin
Lulu WEI1, Beibei LU1, Lin CUI2, Xueying PENG1, Jianning WU1, Deqiang LI3, Zhiyong LIU1(), Xuhong GUO1,4
1. School of Chemistry & Chemical Engineering, Shihezi University/Key Laboratory of Green Processing for Chemical Engineering/Key Laboratory of Materials-Oriented Chemical Engineering of Xinjiang Uygur Autonomous Region/Engineering Research Center of Materials-Oriented Chemical Engineering of Xinjiang Bingtuan, Shihezi 832003, China
2. School of Medicine, Shihezi University, Shihezi 832003, China
3. College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi 830001, China
4. State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
 全文: PDF(624 KB)   HTML
Abstract

A novel type of amphiphilic pH-responsive folate-poly(ε-caprolactone)-block-poly(2-hydroxyethylmethacrylate)-co-poly(2-(dimethylamino)-ethylmethacrylate) (FA-PCL-b-P(HEMA-co-DMAEMA)) (MFP) block copolymers were designed and synthesized via atom transfer radical polymerization (ATRP) and ring opening polymerization (ROP) techniques. The molecular structures of the copolymers were confirmed with1H NMR, FTIR and GPC measurements. The critical micelle concentration (CMC) of MFP in aqueous solution was extremely low (about 6.54 mg/L). Thein vitro release behavior of DOX-loaded micelles was significantly accelerated when the pH value of solution decreased from 7.4 to 5.0. In vitro antitumor efficiency was evaluated by incubating DOX- loaded micelles with Hela cells. The results demonstrated that this copolymer possessed excellent biocompatibility, and FA-decorated micelles MFP showed higher cellular uptake than those micelles without the FA moiety, indicating their unique targetability. These folate-conjugated biodegradable micelles are highly promising for targeted cancer chemothe-rapy.

Key wordsamphiphilic polymer    pH-sensitive    active targeting    drug delivery system    folic acid
收稿日期: 2017-07-16      出版日期: 2017-11-29
Corresponding Author(s): Zhiyong LIU   
 引用本文:   
. [J]. Frontiers of Materials Science, 2017, 11(4): 328-343.
Lulu WEI, Beibei LU, Lin CUI, Xueying PENG, Jianning WU, Deqiang LI, Zhiyong LIU, Xuhong GUO. Folate-conjugated pH-responsive nanocarrier designed for active tumor targeting and controlled release of doxorubicin. Front. Mater. Sci., 2017, 11(4): 328-343.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-017-0401-0
https://academic.hep.com.cn/foms/CN/Y2017/V11/I4/328
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Sample Mn,Tha) Mn,GPCb) Mw/Mnb) c(HEMA)/c(PDMAEMA)c)
Precursor-1 4627 4640 1.47 10/20
Precursor-2 15860 15670 1.50 10/20
Precursor-1' 6985 6870 1.16 10/35
Precursor-2' 18399 25740 1.20 10/35
Tab.1  
Fig.5  
Fig.6  
Micelle Properties
Dh/nm PDI Zeta potential/mV DLC/wt.% DLE/wt.%
Blank MFP1 107±1.4 0.450±0.028 0.52±0.21
MFP2 94±2.1 0.512±0.017 0.80±0.32
DOX-loaded MFP1 173±2.5 0.553±0.033 −19.07±0.014 6.65 66.5
MFP2 164±2.8 0.803±0.006 −13.58±0.231 6.88 68.8
Tab.2  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
Fig.12  
1 Chen G, Roy  I, Yang C , et al.. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chemical Reviews, 2016, 116(5): 2826–2885
https://doi.org/10.1021/acs.chemrev.5b00148 pmid: 26799741
2 Nicolas J, Mura  S, Brambilla D , et al.. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chemical Society Reviews, 2013, 42(3): 1147–1235
https://doi.org/10.1039/C2CS35265F pmid: 23238558
3 Hunter A C, Moghimi  S M. Smart polymers in drug delivery: a biological perspective. Polymer Chemistry, 2017, 8(1): 41–51
https://doi.org/10.1039/C6PY00676K
4 Qin S Y, Zhang  A Q, Cheng  S X, et al.. Drug self-delivery systems for cancer therapy. Biomaterials, 2017, 112: 234–247
https://doi.org/10.1016/j.biomaterials.2016.10.016 pmid: 27768976
5 Choi W I, Yoon  K C, Im  S K, et al.. Remarkably enhanced stability and function of core/shell nanoparticles composed of a lecithin core and a pluronic shell layer by photo-crosslinking the shell layer: in vitro and in vivo study. Acta Biomaterialia, 2010, 6(7): 2666–2673
https://doi.org/10.1016/j.actbio.2010.01.029 pmid: 20102749
6 Cai G, Zhang  H, Liu P , et al.. Triggered disassembly of hierarchically assembled onion-like micelles into the pristine core–shell micelles via a small change in pH. Acta Biomaterialia, 2011, 7(10): 3729–3737
https://doi.org/10.1016/j.actbio.2011.06.027 pmid: 21742068
7 Song W T, Tang  Z H, Zhang  D W, et al.. A cooperative polymeric platform for tumor-targeted drug delivery. Chemical Science, 2016, 7(1): 728–736
https://doi.org/10.1039/C5SC01698C
8 Li H M, Fu  Y, Zhang T , et al.. Rational design of polymeric hybrid micelles with highly tunable properties to co-deliver microRNA-34a and vismodegib for melanoma therapy. Advanced Functional Materials, 2015, 25(48): 7457–7469
https://doi.org/10.1002/adfm.201503115
9 Taghdisi S M, Danesh  N M, Ramezani  M, et al.. Double targeting and aptamer-assisted controlled release delivery of epirubicin to cancer cells by aptamers-based dendrimer in vitro and in vivo. European Journal of Pharmaceutics and Biopharmaceutics, 2016, 102: 152–158
https://doi.org/10.1016/j.ejpb.2016.03.013 pmid: 26987703
10 Zhang C Y, Chen  Q, Wu W S , et al.. Synthesis and evaluation of cholesterol-grafted PEGylated peptides with pH-triggered property as novel drug carriers for cancer chemotherapy. Colloids and Surfaces B: Biointerfaces, 2016, 142: 55–64
https://doi.org/10.1016/j.colsurfb.2016.02.025 pmid: 26930034
11 Suo A, Qian  J, Zhang Y , et al.. Comb-like amphiphilic polypeptide-based copolymer nanomicelles for co-delivery of doxorubicin and P-gp siRNA into MCF-7 cells. Materials Science and Engineering C, 2016, 62: 564–573
https://doi.org/10.1016/j.msec.2016.02.007 pmid: 26952460
12 Lv Y, Tao  L, Annie Bligh S W , et al.. Targeted delivery and controlled release of doxorubicin into cancer cells using a multifunctional graphene oxide. Materials Science and Engineering C, 2016, 59: 652–660
https://doi.org/10.1016/j.msec.2015.10.065 pmid: 26652419
13 Peetla C, Vijayaraghavalu  S, Labhasetwar V . Biophysics of cell membrane lipids in cancer drug resistance: Implications for drug transport and drug delivery with nanoparticles. Advanced Drug Delivery Reviews, 2013, 65(13–14): 1686–1698
https://doi.org/10.1016/j.addr.2013.09.004 pmid: 24055719
14 Li L, Lu  B B, Wu  J N, et al.. Synthesis and self-assembly behavior of thermo-responsive star-shaped POSS-(PCL-P(MEO2MA-co-PEGMA))16 inorganic/organic hybrid block copolymers with tunable lower critical solution temperature. New Journal of Chemistry, 2016, 40(5): 4761–4768
https://doi.org/10.1039/C6NJ00279J
15 Wang M, Li  J, Li X , et al.. Magnetically and pH dual responsive dendrosomes for tumor accumulation enhanced folate-targeted hybrid drug delivery. Journal of Controlled Release, 2016, 232: 161–174
https://doi.org/10.1016/j.jconrel.2016.04.015 pmid: 27090165
16 Li G, Yan  Q, Xia H , et al.. Therapeutic-ultrasound-triggered shape memory of a melamine-enhanced poly(vinyl alcohol) physical hydrogel. ACS Applied Materials & Interfaces, 2015, 7(22): 12067–12073
https://doi.org/10.1021/acsami.5b02234 pmid: 25985115
17 Choi S K, Thomas  T, Li M H , et al.. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chemical Communications, 2010, 46(15): 2632–2634
https://doi.org/10.1039/b927215c pmid: 20449327
18 Yan Q, Yuan  J, Cai Z , et al.. Voltage-responsive vesicles based on orthogonal assembly of two homopolymers. Journal of the American Chemical Society, 2010, 132(27): 9268–9270
https://doi.org/10.1021/ja1027502 pmid: 20565093
19 Sun C Y, Liu  Y, Du J Z , et al.. Facile generation of tumor-pH-labile linkage-bridged block copolymers for chemotherapeutic delivery. Angewandte Chemie International Edition, 2016, 55(3): 1010–1014
https://doi.org/10.1002/anie.201509507 pmid: 26756443
20 Li D, Bu  Y, Zhang L , et al.. Facile construction of pH- and redox-responsive micelles from a biodegradable poly(β-hydroxyl amine) for drug delivery. Biomacromolecules, 2016, 17(1): 291–300
https://doi.org/10.1021/acs.biomac.5b01394 pmid: 26682612
21 Li Y, Liu  G, Wang X , et al.. Enzyme-responsive polymeric vesicles for bacterial-strain-selective delivery of antimicrobial agents. Angewandte Chemie International Edition, 2016, 55(5): 1760–1764
https://doi.org/10.1002/anie.201509401 pmid: 26694087
22 Maeda H, Nakamura  H, Fang J . The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Advanced Drug Delivery Reviews, 2013, 65(1): 71–79
https://doi.org/10.1016/j.addr.2012.10.002 pmid: 23088862
23 Bose R J C ,  Lee S H ,  Park H. Biofunctionalized nanoparticles: an emerging drug delivery platform for various disease treatments. Drug Discovery Today, 2016, 21(8): 1303–1312
https://doi.org/10.1016/j.drudis.2016.06.005 pmid: 27297732
24 Shi J, Kantoff  P W, Wooster  R, et al.. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer, 2017, 17(1): 20–37 
https://doi.org/10.1038/nrc.2016.108 pmid: 27834398
25 Li H J, Du  J Z, Du  X J, et al.. Stimuli-responsive clustered nanoparticles for improved tumor penetration and therapeutic efficacy. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(15): 4164–4169
https://doi.org/10.1073/pnas.1522080113 pmid: 27035960
26 Yin Q, Tang  L, Cai K , et al.. Pamidronate functionalized nanoconjugates for targeted therapy of focal skeletal malignant osteolysis. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(32): E4601–E4609
https://doi.org/10.1073/pnas.1603316113 pmid: 27457945
27 Ma Y, Huang  J, Song S , et al.. Cancer-targeted nanotheranostics: Recent advances and perspectives. Small, 2016, 12(36): 4936–4954
https://doi.org/10.1002/smll.201600635 pmid: 27150247
28 Das A, Theato  P. Activated ester containing polymers: opportunities and challenges for the design of functional macromolecules. Chemical Reviews, 2016, 116(3): 1434–1495
https://doi.org/10.1021/acs.chemrev.5b00291 pmid: 26305991
29 Li H J, Du  J Z, Liu  J, et al.. Smart superstructures with ultrahigh pH-sensitivity for targeting acidic tumor microenvironment: instantaneous size switching and improved tumor penetration. ACS Nano, 2016, 10(7): 6753–6761
https://doi.org/10.1021/acsnano.6b02326 pmid: 27244096
30 Ata S, Basak  S, Mal D , et al.. Synthesis and self-assembly behavior of POSS tethered amphiphilic polymer based on poly(caprolactone) (PCL) grafted with poly(acrylic acid) (PAA) via ROP, ATRP, and CuAAC reaction. Journal of Polymer Research, 2017, 24(2): 2–13
https://doi.org/10.1007/s10965-016-1171-6
31 Fu S X, Yang  G Q, Wang  J, et al.. Acid-degradable poly(ortho ester urethanes) copolymers for potential drug carriers: Preparation, characterization, in vitro and in vivo evaluation. Polymer, 2017, 114: 1–14
https://doi.org/10.1016/j.polymer.2017.02.079
32 DiLauro A M, Zhang  H, Baker M S , et al.. Accessibility of responsive end-caps in films composed of stimuli-responsive, depolymerizable poly(phthalaldehydes). Macromolecules, 2013, 46(18): 7257–7265
https://doi.org/10.1021/ma401463e
33 Seo W, Phillips  S T. Patterned plastics that change physical structure in response to applied chemical signals. Journal of the American Chemical Society, 2010, 132(27): 9234–9235
https://doi.org/10.1021/ja104420k pmid: 20565108
34 Pan J, Li  G, Chen Z , et al.. Alternative block polyurethanes based on poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(ethylene glycol). Biomaterials, 2009, 30(16): 2975–2984
https://doi.org/10.1016/j.biomaterials.2009.02.005 pmid: 19230967
35 Saad G R, Elsawy  M A, Elsabee  M Z. Preparation, characterization and antimicrobial activity of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-g-poly(N-vinylpyrrolidone) copolymers. Polymer-Plastics Technology and Engineering, 2012, 51(11): 1113–1121
https://doi.org/10.1080/03602559.2012.680568
36 Li Z, Yuan  D, Fan X , et al.. Poly(ethylene glycol) conjugated poly(lactide)-based polyelectrolytes: synthesis and formation of stable self-assemblies induced by stereocomplexation. Langmuir, 2015, 31(8): 2321–2333
https://doi.org/10.1021/la504860a pmid: 25661108
37 Xu C F, Zhang  H B, Sun  C Y, et al.. Tumor acidity-sensitive linkage-bridged block copolymer for therapeutic siRNA delivery. Biomaterials, 2016, 88: 48–59
https://doi.org/10.1016/j.biomaterials.2016.02.031 pmid: 26945455
38 Khodaverdi E, Gharechahi  M, Alibolandi M , et al.. Self-assembled supramolecular hydrogel based on PCL-PEG-PCL triblock copolymer and-cyclodextrin inclusion complex for sustained delivery of dexamethasone. International Journal of Pharmaceutical Investigation, 2016, 6(2): 78–85
39 Wang M, Zhou  C, Chen J , et al.. Multifunctional biocompatible and biodegradable folic acid conjugated poly(ε-caprolactone)-polypeptide copolymer vesicles with excellent antibacterial activities. Bioconjugate Chemistry, 2015, 26(4): 725–734
https://doi.org/10.1021/acs.bioconjchem.5b00061 pmid: 25721382
40 Sun C Y, Shen  S, Xu C F , et al.. Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. Journal of the American Chemical Society, 2015, 137(48): 15217–15224
https://doi.org/10.1021/jacs.5b09602 pmid: 26571079
41 Wang B B, Galliford  C V, Low  P S. Guiding principles in the design of ligand-targeted nanomedicines. Nanomedicine, 2014, 9(2): 313–330
https://doi.org/10.2217/nnm.13.175
42 Qiu L Y, Yan  L, Zhang L , et al.. Folate-modified poly(2-ethyl-2-oxazoline) as hydrophilic corona in polymeric micelles for enhanced intracellular doxorubicin delivery. International Journal of Pharmaceutics, 2013, 456(2): 315–324
https://doi.org/10.1016/j.ijpharm.2013.08.071 pmid: 24016742
43 Qian J, Xu  M, Suo A , et al.. Folate-decorated hydrophilic three-arm star-block terpolymer as a novel nanovehicle for targeted co-delivery of doxorubicin and Bcl-2 siRNA in breast cancer therapy. Acta Biomaterialia, 2015, 15: 102–116
https://doi.org/10.1016/j.actbio.2014.12.018 pmid: 25545322
44 Zhang Y, Zhou  J, Yang C , et al.. Folic acid-targeted disulfide-based cross-linking micelle for enhanced drug encapsulation stability and site-specific drug delivery against tumors. International Journal of Nanomedicine, 2016, 11: 1119–1130
pmid: 27051287
45 Yhee J Y, Song  S, Lee S J , et al.. Cancer-targeted MDR-1 siRNA delivery using self-cross-linked glycol chitosan nanoparticles to overcome drug resistance. Journal of Controlled Release, 2015, 198: 1–9
https://doi.org/10.1016/j.jconrel.2014.11.019 pmid: 25481438
46 Eloy J O, Petrilli  R, Chesca D L , et al.. Anti-HER2 immunoliposomes for co-delivery of paclitaxel and rapamycin for breast cancer therapy. European Journal of Pharmaceutics and Biopharmaceutics, 2017, 115: 159–167
https://doi.org/10.1016/j.ejpb.2017.02.020 pmid: 28257810
47 Palanca-Wessels M C ,  Booth G C ,  Convertine A J , et al.. Antibody targeting facilitates effective intratumoral siRNA nanoparticle delivery to HER2-overexpressing cancer cells. Oncotarget, 2016, 7(8): 9561–9575
48 Feng C, Gu  L, Yang D , et al.. Size-controllable gold nanoparticles stabilized by PDEAEMA-based double hydrophilic graft copolymer. Polymer, 2009, 50(16): 3990–3996
https://doi.org/10.1016/j.polymer.2009.06.048
49 Lu B, Li  L, Wu J , et al.. Synthesis of a dual pH and temperature responsive star triblock copolymer based on β-cyclodextrins for controlled intracellular doxorubicin delivery release. New Journal of Chemistry, 2016, 40(10): 8397–8407
https://doi.org/10.1039/C6NJ01360K
50 Matyjaszewski K, Tsarevsky  N V. Macromolecular engineering by atom transfer radical polymerization. Journal of the American Chemical Society, 2014, 136(18): 6513–6533
https://doi.org/10.1021/ja408069v pmid: 24758377
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed