Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2018, Vol. 12 Issue (2): 129-138   https://doi.org/10.1007/s11706-018-0422-3
  本期目录
Utilization of surface differences to improve dyeing properties of poly(m-phenylene isophthalamide) membranes
Shenshen OUYANG, Tao WANG(), Longgang ZHONG, Shunli WANG, Sheng WANG()
Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Ministry of Education), Zhejiang Sci-Tech University, Hangzhou 310018, China
 全文: PDF(467 KB)   HTML
Abstract

Bulk poly(m-phenylene isophthalamide) (PMIA) can achieve flexibility upon dissolution by a LiCl/dimethylacetamide co-solvent, but remains hydrophobic despite the occasional emergence of cis amide groups providing a weak negative charge. In this study, based on the significant surface differences between PMIA membranes processed by nanofiber electrospinning and casting, a series of chemical analyses, in-situ Au nanoparticle depositions, and dye-adsorption experiments revealed that more cis-configuration amide groups appeared on the surface of the electrospun PMIA membrane than on that of the cast membrane. Based on this surface difference, a strategy was proposed to improve the dyeing properties of PMIA by reversibly changing the cis/trans configurations of electrospun and cast membranes. The reversible chain–segment switch mechanism is a novel method for tuning the macroscale properties of polymer materials based on inherent molecular characteristics.

Key wordswettability    polymer    surface difference    electrospun    PMIA    interfaces
收稿日期: 2017-11-24      出版日期: 2018-05-29
Corresponding Author(s): Tao WANG,Sheng WANG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2018, 12(2): 129-138.
Shenshen OUYANG, Tao WANG, Longgang ZHONG, Shunli WANG, Sheng WANG. Utilization of surface differences to improve dyeing properties of poly(m-phenylene isophthalamide) membranes. Front. Mater. Sci., 2018, 12(2): 129-138.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-018-0422-3
https://academic.hep.com.cn/foms/CN/Y2018/V12/I2/129
Fig.1  
Fig.2  
Deposition/nm ESM element concentrations CM element concentrations
c(C)/% c(N)/% c(O)/% c(C)/% c(N)/% c(O)/%
9.5 77.75 10.56 11.69 78.08 10.56 11.83
7.0 75.51 12.34 12.15 75.21 12.34 12.97
4.5 72.21 13.47 14.32 77.12 13.47 10.82
2.5 66.29 15.41 18.30 76.08 10.46 13.46
Tab.1  
Membrane Manufacture Zeta potential at pH 5.3/mV Contact angle/(º )
ESM electrospinning −26.2 0±1
CM casting −11.1 130±1
Tab.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
1 Kurusu R S, Demarquette N R. Blending and morphology control to turn hydrophobic SEBS electrospun mats superhydrophilic. Langmuir, 2015, 31(19): 5495–5503
https://doi.org/10.1021/acs.langmuir.5b00814 pmid: 25913789
2 Uhlmann P, Frenzel R, Voit B, et al.. Research agenda surface technology: Future demands for research in the field of coatings materials. Progress in Organic Coatings, 2007, 58(2–3): 122–126
https://doi.org/10.1016/j.porgcoat.2006.08.020
3 Yu X, Wang Z Q, Jiang Y G, et al.. Reversible pH-responsive surface: from superhydrophobicity to superhydrophilicity. Advanced Materials, 2005, 17(10): 1289–1293
https://doi.org/10.1002/adma.200401646
4 Zhang T, Luo T. High-contrast, reversible thermal conductivity regulation utilizing the phase transition of polyethylene nanofibers. ACS Nano, 2013, 7(9): 7592–7600
https://doi.org/10.1021/nn401714e pmid: 23944835
5 Chen M, Dong M, Havelund R, et al.. Thermo-responsive core–sheath electrospun nanofibers from poly (N-isopropylacrylamide)/polycaprolactone blends. Chemistry of Materials, 2010, 22(14): 4214–4221
https://doi.org/10.1021/cm100753r
6 Anwar N, Willms T, Grimme B, et al.. Light-switchable and monodisperse conjugated polymer particles. ACS Macro Letters, 2013, 2(9): 766–769
https://doi.org/10.1021/mz400362g
7 Xin B, Hao J. Reversibly switchable wettability. Chemical Society Reviews, 2010, 39(2): 769–782
https://doi.org/10.1039/B913622C pmid: 20111792
8 Anastasiadis S H, Retsos H, Pispas S, et al.. Neophytides smart polymer surfaces. Macromolecules, 2003, 36(6): 1994–1999
https://doi.org/10.1021/ma0211129
9 Sandra C D S, Loguercio L F, Corrêa D S, et al.. Interfacial properties and thermal stability of modified poly(m-phenylene isophthalamide) thin films. Surface and Interface Analysis, 2013, 45(4): 837–843
https://doi.org/10.1002/sia.5177
10 Horrocks A R. Flame retardant challenges for textiles and fibres: New chemistry versus innovatory solutions. Polymer Degradation & Stability, 2011, 96(3): 377–392
https://doi.org/10.1016/j.polymdegradstab.2010.03.036
11 Nimmanpipug P, Tashiro K, Maeda Y, et al.. Factors governing the three-dimensional hydrogen bond network structure of poly(m-phenylene isophthalamide) and a series of its model compounds: (1) Systematic classification of structures analyzed by the X-ray diffraction method. The Journal of Physical Chemistry B, 2002, 106(27): 6842–6848
https://doi.org/10.1021/jp013982i
12 Kakida H, Chatani Y, Tadokoro H. Crystal structure of poly(m-phenylene isophthalamide). Journal of Polymer Science Part B: Polymer Physics, 1976, 14(3): 427–435
https://doi.org/10.1002/pol.1976.180140305
13 Morgenstern B, Kammer H W. Solvation in cellulose–LiCl–DMAc solutions. Trends in Polymer Science, 1996, 4: 87–92
14 McCormick C L, Callais P A, Hutchinson J B H. Solution studies of cellulose in lithium chloride and N,N-dimethylacetmide. Macromolecules, 1985, 18(12): 2394–2401
https://doi.org/10.1021/ma00154a010
15 Yao L, Lee C, Kim J. Fabrication of electrospun meta-aramid nanofibers in different solvent systems. Fibers and Polymers, 2010, 11(7): 1032–1040
https://doi.org/10.1007/s12221-010-1032-6
16 Ren X, Zhao C, Du S, et al.. Fabrication of asymmetric poly (m-phenylene isophthalamide) nanofiltration membrane for chromium(VI) removal. Journal of Environmental Sciences, 2010, 22(9): 1335–1341
https://doi.org/10.1016/S1001-0742(09)60259-X pmid: 21174963
17 Zhao C, Du S, Wang T, et al.. Arsenic removal from drinking water by self-made PMIA nanofiltration membrane. Advances in Chemical Engineering and Science, 2012, 2(3): 366–371
https://doi.org/10.4236/aces.2012.23043
18 Ouyang S, Wang T, Yu Y, et al.. From trans to cis conformation: further understanding the surface properties of poly(m-phenylene isophthalamide). ACS Omega, 2017, 2(1): 290–298
https://doi.org/10.1021/acsomega.6b00527
19 Skrovanek D J, Howe S E, Painter P C, et al.. Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules, 1985, 18(9): 1676–1683
https://doi.org/10.1021/ma00151a006
20 Moore W H, Krimm S. Vibrational analysis of peptides, polypeptides, and proteins. II. β-poly(L-alanine) and β-poly(L-anaylglycine). Biopolymers, 1976, 15: 2465–2483
https://doi.org/10.1002/bip.1976.360151211 pmid: 1000052
21 Krimm S, Song S, Asher S A. Amide V overtone assignment of a configuration-sensitive band in the UV resonance Raman spectra of peptides and proteins. Journal of the American Chemical Society, 1989, 111(12): 4290–4294
https://doi.org/10.1021/ja00194a021
22 Mishra A K, Chattopadhyay D K, Sreedhar B, et al.. FT-IR and XPS studies of polyurethane-urea-imide coatings. Progress in Organic Coatings, 2006, 55(3): 231–243
https://doi.org/10.1016/j.porgcoat.2005.11.007
23 Spanjaard D, Guillot C, Desjonqueres M C, et al.. Surface core level spectroscopy of transition metals: A new tool for the determination of their surface structure. Surface Science Reports, 1985, 5(1–2): 1–85
https://doi.org/10.1016/0167-5729(85)90003-2
[1] Supplementary Material 1 Download
[2] Supplementary Material 2 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed