Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2019, Vol. 13 Issue (1): 99-106   https://doi.org/10.1007/s11706-019-0454-3
  本期目录
Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics
Fang LIU, Xiangping JIANG(), Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU
Jiangxi Key Laboratory of Advanced Ceramic Materials, School of Materials Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333403, China
 全文: PDF(1284 KB)   HTML
Abstract

Er3+-doped SrBi4Ti4O15–Bi4Ti3O12 (SBT–BIT–xEr3+, x = 0.00, 0.05, 0.10, 0.15 and 0.20) inter-growth ceramics were synthesized by the solid-state reaction method. Structural, electrical and up-conversion properties of SBT–BIT–xEr3+ were investigated. All samples showed a single phase of the orthorhombic structure. Raman spectroscopy indicated that the Er3+ substitution for Bi3+ at A sites of the pseudo-perovskite layer increases the lattice distortion of SBT–BIT–xEr3+ ceramics. The substitution of Bi3+ by Er3+ leads to a decrease of dielectric loss tanδ and an increase of conductivity activation energy. Piezoelectric constant d33 was slightly improved, but dielectric constant was decreased with the Er3+ doping. The SBT–BIT–xEr3+ ceramic with x = 0.15 exhibits the optimized electrical behavior (d33 ~17 pC/N, tanδ ~0.83%). Moreover, two bright green (532 and 548 nm) and one red (670 nm) emission bands were observed under the 980 nm excitation. Optimized emission intensity was also obtained when x = 0.15 for the SBT–BIT–xEr3+ ceramic. Therefore, this kind of ceramics ought to be promising candidates for multifunctional optoelectronic applications.

Key wordsinter-growth structure    electrical property    multifunctional optoelectronic material    photoluminescence
收稿日期: 2018-11-25      出版日期: 2019-03-07
Corresponding Author(s): Xiangping JIANG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2019, 13(1): 99-106.
Fang LIU, Xiangping JIANG, Chao CHEN, Xin NIE, Xiaokun HUANG, Yunjing CHEN, Hao HU, Chunyang SU. Structural, electrical and photoluminescence properties of Er3+-doped SrBi4Ti4O15--Bi4Ti3O12 inter-growth ceramics. Front. Mater. Sci., 2019, 13(1): 99-106.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-019-0454-3
https://academic.hep.com.cn/foms/CN/Y2019/V13/I1/99
Fig.1  
Fig.2  
Fig.3  
x/mol I(542) I(569) I(847) I(881) [I(847) + I(881)]/[I(544) + I(569) + I(847) + I(881)]
0.00 0.295 0.331 0.192 0.231 0.383
0.05 0.309 0.347 0.134 0.177 0.322
0.10 0.376 0.413 0.153 0.186 0.301
0.15 0.438 0.472 0.179 0.208 0.299
0.20 0.465 0.500 0.178 0.206 0.285
Tab.1  
Fig.4  
x/mol TC/°C εr εm tanδ/% d33/(pC·N−1)
0.00 600 261 1160 1.01 10
0.05 601 256 1105 0.96 14
0.10 609 227 1059 0.85 15
0.15 605 196 953 0.83 17
0.20 596 194 863 0.97 12
Tab.2  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 B HPark, B S Kang, S D Bu, et al.. Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature, 1999, 401(6754): 682–684
https://doi.org/10.1038/44352
2 C MWang, J F Wang, C Mao, et al.. Enhanced dielectric and piezoelectric properties of Aurivillius-type potassium bismuth titanate ceramics by cerium modification. Journal of the American Ceramic Society, 2008, 91(9): 3094–3097
https://doi.org/10.1111/j.1551-2916.2008.02557.x
3 TWei, C Z Zhao, C P Li, et al.. Photoluminescence and ferroelectric properties in Eu doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectric ceramics. Journal of Alloys and Compounds, 2013, 577(45): 728–733
https://doi.org/10.1016/j.jallcom.2013.06.186
4 M DMaeder, D Damjanovic, NSetter. Lead free piezoelectric materials. Journal of Electroceramics, 2004, 13(1-3): 385–392
https://doi.org/10.1007/s10832-004-5130-y
5 Z HPeng, X X Zeng, X Yang, et al.. Dielectric relaxation behavior of Mn-modified Ca0.9Pr0.05[]0.05Bi2Nb2O9-based high temperature piezoceramics. Ceramics International, 2017, 43(1): 1249–1255
https://doi.org/10.1016/j.ceramint.2016.10.072
6 CLong, Q Chang, YWu, et al.. New layer-structured ferroelectric polycrystalline materials, Na0.5NdxBi4.5−xTi4O15: crystal structures, electrical properties and conduction behaviors. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(34): 8852–8864
https://doi.org/10.1039/C5TC01237F
7 Z GYi, Y X Li, J T Zeng, et al.. Lanthanum distribution and dielectric properties of intergrowth Bi5−xLaxTiNbWO15 ferroelectrics. Applied Physics Letters, 2005, 87(20): 202901
https://doi.org/10.1063/1.2132077
8 YNoguchi, M Miyayama, TKudo. Ferroelectric properties of intergrowth Bi4Ti3O12–SrBi4Ti4O15 ceramics. Applied Physics Letters, 2000, 77(22): 3639–3641
https://doi.org/10.1063/1.1328366
9 S PGu, W Wang, J HHe, et al.. Ferroelectric, piezoelectric and dielectric properties of Nb modified Bi4Ti3O12–SrBi4Ti4O15 intergrowth. Integrated Ferroelectrics, 2007, 94(1): 56–63
https://doi.org/10.1080/10584580701756219
10 GParida, J Bera. Effect of La-substitution on the structure, dielectric and ferroelectric properties of Nb modified SrBi8Ti7O27 ceramics. Materials Research Bulletin, 2015, 68: 155–159
https://doi.org/10.1016/j.materresbull.2015.03.059
11 B HPark, S J Hyun, S D Bu, et al.. Differences in nature of defects between SrBi2Ta2O9 and Bi4Ti3O12. Applied Physics Letters, 1999, 74(13): 1907–1909
https://doi.org/10.1063/1.123709
12 Y LJiang, X P Jiang, C Chen, et al.. Structural and electrical properties of La3+-doped Na0.5Bi4.5Ti4O15–Bi4Ti3O12 inter-growth high temperature piezoceramics. Ceramics International, 2017, 43(8): 6446–6452
https://doi.org/10.1016/j.ceramint.2017.02.059
13 HSun, Q Zhang, XWang, et al.. A new red-emitting material K0.5Na0.5NbO3: Eu3+ for white LEDs. Materials Research Bulletin, 2015, 64: 134–138
https://doi.org/10.1016/j.materresbull.2014.12.043
14 X MLi, H Guo, Y LWei, et al.. Enhanced up-conversion in Er3+-doped transparent glass-ceramics containing NaYbF4 nanocrystals. Journal of Luminescence, 2014, 152(2): 168–171
https://doi.org/10.1016/j.jlumin.2013.11.042
15 RCui, C Deng, XGong, et al.. Photoluminescence properties of a green to red-emitting Eu3+, Tb3+ co-doped CaBi2Ta2O9 ferroelectrics. Journal of Electroceramics, 2014, 32(2‒3): 215–219
https://doi.org/10.1007/s10832-013-9875-z
16 C MLau, X W Xu, K W Kwok. Photoluminescence, ferroelectric, dielectric and piezoelectric properties of Er-doped BNT–BT multifunctional ceramics. Applied Surface Science, 2015, 336: 314–320
https://doi.org/10.1016/j.apsusc.2014.12.105
17 RBokolia, O P Thakur, V K Rai, et al.. Dielectric, ferroelectric and photoluminescence properties of Er3+ doped Bi4Ti3O12, ferroelectric ceramics. Ceramics International, 2015, 41(4): 6055–6066
https://doi.org/10.1016/j.ceramint.2015.01.062
18 DPeng, H Zou, CXu, et al.. Er-doped BaBi4Ti4O15 multifunctional ferroelectrics: up-conversion photoluminescence, dielectric and ferroelectric properties. Journal of Alloys and Compounds, 2013, 552(9): 463–468
https://doi.org/10.1016/j.jallcom.2012.10.194
19 DPeng, H Zou, CXu, et al.. Upconversion luminescence, ferroelectrics and piezoelectrics of Er-doped SrBi4Ti4O15. AIP Advances, 2012, 2(4): 042187
https://doi.org/10.1063/1.4773318
20 GParida, J Bera. Electrical properties of niobium doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics. Ceramics International, 2014, 40(2): 3139–3144
https://doi.org/10.1016/j.ceramint.2013.09.131
21 ZYao, R Chu, ZXu, et al.. Enhanced electrical properties of (Li,Ce) co-doped Sr(Na0.5Bi0.5)Bi4Ti5O18 high temperature piezoceramics. RSC Advances, 2016, 6(40): 33387–33392
https://doi.org/10.1039/C6RA02203K
22 LYu, J Hao, ZXu, et al.. Strong red emission and enhanced ferroelectric properties in (Pr, Ce)-modified Na0.5Bi4.5Ti4O15 multifunctional ceramics. Journal of Materials Science Materials in Electronics, 2016, 27(11): 12216–12221
https://doi.org/10.1007/s10854-016-5377-5
23 XChou, J Zhai, HJiang, et al.. Dielectric properties and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. Journal of Applied Physics, 2007, 102(8): 084106
https://doi.org/10.1063/1.2799081
24 DPeng, X Wang, CXu, et al.. Bright upconversion emission, increased TC, enhanced ferroelectric and piezoelectric properties in Er-doped CaBi4Ti4O15 multifunctional ferroelectric oxides. Journal of the American Ceramic Society, 2013, 96(1): 184–190
https://doi.org/10.1111/jace.12002
25 JZhu, X B Chen, J H He, et al.. Raman scattering investigations on lanthanum-doped Bi4Ti3O12–SrBi4Ti4O15 intergrowth ferroelectrics. Journal of Solid State Chemistry, 2005, 178(9): 2832–2837 doi:10.1016/j.jssc.2005.06.028
26 WWang, S P Gu, X Y Mao, et al.. Effect of Nd modification on electrical properties of mixed-layer Aurivillius phase Bi4Ti3O12–SrBi4Ti4O15. Journal of Applied Physics, 2007, 102(2): 024102
https://doi.org/10.1063/1.2753582
27 XJiang, X Jiang, CChen, et al.. Photoluminescence, structural, and electrical properties of erbium-doped Na0.5Bi4.5Ti4O15 ferroelectric ceramics. Journal of the American Ceramic Society, 2016, 99(4): 1332–1339
https://doi.org/10.1111/jace.14115
28 SKojima, R Imaizumi, SHamazaki, et al.Raman-scattering study of bismuth layer-structure ferroelectrics. Japanese Journal of Applied Physics Part 1, 1994, 33(9B): 5559–5564
https://doi.org/10.1143/JJAP.33.5559
29 Y LJiang, X P Jiang, C Chen, et al.. Photoluminescence and electrical properties of Er3+-doped Na0.5Bi4.5Ti4O15–Bi4Ti3O12 inter-growth ferroelectric ceramics. Frontiers of Materials Science, 2017, 11(1): 51–58
https://doi.org/10.1007/s11706-017-0367-y
30 KShi, L Peng, M JLi, et al.. Structural distortion, phonon behavior and electronic transition of Aurivillius layered ferroelectric CaBi2Nb2−xWxO9 ceramics. Journal of Alloys and Compounds, 2015, 653: 168–174
https://doi.org/10.1016/j.jallcom.2015.09.037
31 SEzhilvalavan, J M Xue, J Wang. Dielectric relaxation in SrBi2(V0.1Nb0.9)2O9 layered perovskite ceramics. Materials Chemistry and Physics, 2002, 75(1–3): 50–55
https://doi.org/10.1016/S0254-0584(02)00029-9
32 PDurán-Martín, ACastro, PMillán, et al.. Influence of Bi-site substitution on the ferroelectricity of the Aurivillius compound Bi2SrNb2O9. Journal of Materials Research, 1998, 13(9): 2565–2571
https://doi.org/10.1557/JMR.1998.0358
33 YWu, S J Limmer, T P Chou, et al.. Influence of tungsten doping on dielectric properties of strontium bismuth niobate ferroelectric ceramics. Journal of Materials Science Letters, 2002, 21(12): 947–949
https://doi.org/10.1023/A:1016077724427
34 SKumar, K B R Varma. Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. Journal of Physics D: Applied Physics, 2009, 42(7): 075405
https://doi.org/10.1088/0022-3727/42/7/075405
35 CLong, H Fan. Effect of lanthanum substitution at A site on structure and enhanced properties of new Aurivillius oxide K0.25Na0.25La0.5Bi2Nb2O9. Dalton Transactions, 2012, 41(36): 11046–11054
https://doi.org/10.1039/c2dt31085f pmid: 22858738
36 FRehman, H B Jin, J B Li. Effect of reduction/oxidation annealing on the dielectric relaxation and electrical properties of Aurivillius Na0.5Gd0.5Bi4Ti4O15 ceramics. RSC Advances, 2016, 6(41): 35102–35109
https://doi.org/10.1039/C6RA04628B
37 QXu, M T Lanagan, W Luo, et al.. Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3–BaTiO3 ceramics modified with NaNbO3. Journal of the European Ceramic Society, 2016, 36(10): 2469–2477
https://doi.org/10.1016/j.jeurceramsoc.2016.03.011
38 C MLau, X Wu, K WKwok. Effects of vacancies on luminescence of Er-doped 0.93Bi0.5Na0.5TiO3–0.07BaTiO3 ceramics. Journal of Applied Physics, 2015, 118(3): 034107
https://doi.org/10.1063/1.4927297
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed