Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors
Ge JU1, Muhammad Arif KHAN2, Huiwen ZHENG1, Zhongxun AN3, Mingxia WU3, Hongbin ZHAO1(), Jiaqiang XU1(), Lei ZHANG4, Salma BILAL5, Jiujun ZHANG1,6
1. NEST Lab, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China 2. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China 3. National Engineering Research Center for Supercapacitor for Vehicles, Shanghai AOWEI Technology Development Co., Ltd., Shanghai 201203, China 4. Institute for Fuel Cell Innovation, National Research Council of Canada, 4250 Wesbrook Mall, Vancouver, Canada 5. National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120 Peshawar, Pakistan 6. Institute of Sustainable Energy, Shanghai University, Shanghai 200444, China
Porous polyaniline (PANI) was prepared through an efficient and cost-effective method by polymerization of aniline in the NaCl solution at room temperature. The resulting PANI provided large surface area due to its highly porous structure and the intercrossed nanorod, resulting in good electrochemical performance. The porous PANI electrodes showed a high specific capacitance of 480 F∙g−1, 3 times greater than that of PANI without using the NaCl solution. We also make chemically crosslinked hydrogel film for hydrogel polymer electrolyte as well as the flexible supercapacitors (SCs) with PANI. The specific capacitance of the device was 234 F∙g−1 at the current density of 1 A∙g−1. The energy density of the device could reach as high as 75 W∙h∙kg−1 while the power density was 0.5 kW∙kg−1, indicating that PANI be a promising material in flexible SCs.
. [J]. Frontiers of Materials Science, 2019, 13(2): 133-144.
Ge JU, Muhammad Arif KHAN, Huiwen ZHENG, Zhongxun AN, Mingxia WU, Hongbin ZHAO, Jiaqiang XU, Lei ZHANG, Salma BILAL, Jiujun ZHANG. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors. Front. Mater. Sci., 2019, 13(2): 133-144.
Y Huang, Z Tang, Z Liu, et al.. Toward enhancing wearability and fashion of wearable supercapacitor with modified polyurethane artificial leather electrolyte. Nano-Micro Letters, 2018, 10(3): 38 https://doi.org/10.1007/s40820-018-0191-7
pmid: 30393687
2
Z Pei, H Hu, G Liang, et al.. Carbon-based flexible and all-solid-state micro-supercapacitors fabricated by inkjet printing with enhanced performance. Nano-Micro Letters, 2017, 9(2): 19 https://doi.org/10.1007/s40820-016-0119-z
pmid: 30460315
3
J Dominic, T David, A Vanaja, et al.. Supercapacitor performance study of lithium chloride doped polyaniline. Applied Surface Science, 2018, 460: 40–47 https://doi.org/10.1016/j.apsusc.2018.02.164
4
S Li, N Zhang, H Zhou, et al.. An all-in-one material with excellent electrical double-layer capacitance and pseudocapacitance performances for supercapacitor. Applied Surface Science, 2018, 453: 63–72 https://doi.org/10.1016/j.apsusc.2018.05.088
5
X Ren, H Fan, J Ma, et al.. Hierarchical Co3O4/PANI hollow nanocages: Synthesis and application for electrode materials of supercapacitors. Applied Surface Science, 2018, 441: 194–203 https://doi.org/10.1016/j.apsusc.2018.02.013
6
X Peng, L Peng, C Wu, et al.. Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 2014, 43(10): 3303–3323 https://doi.org/10.1039/C3CS60407A
J Huang, K Wang, Z Wei. Conducting polymer nanowire arrays with enhanced electrochemical performance. Journal of Materials Chemistry, 2010, 20(6): 1117–1121 https://doi.org/10.1039/B919928D
9
X Lu, M Yu, G Wang, et al.. Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science, 2014, 7(7): 2160–2181 https://doi.org/10.1039/c4ee00960f
10
H P Cong, X C Ren, P Wang, et al.. Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Energy & Environmental Science, 2013, 6(4): 1185–1191 https://doi.org/10.1039/c2ee24203f
11
J Xu, K Wang, S Z Zu, et al.. Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. ACS Nano, 2010, 4(9): 5019–5026 https://doi.org/10.1021/nn1006539
pmid: 20795728
12
S Bhadra, D Khastgir, N K Singha, et al.. Progress in preparation, processing and applications of polyaniline. Progress in Polymer Science, 2009, 34(8): 783–810 https://doi.org/10.1016/j.progpolymsci.2009.04.003
13
N R Chiou, A J Epstein. Polyaniline nanofibers prepared by dilute polymerization. Advanced Materials, 2005, 17(13): 1679–1683 https://doi.org/10.1002/adma.200401000
14
D Li, J Huang, R B Kaner. Polyaniline nanofibers: a unique polymer nanostructure for versatile applications. Accounts of Chemical Research, 2009, 42(1): 135–145 https://doi.org/10.1021/ar800080n
15
Y Wang, Y Shi, L Pan, et al.. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Letters, 2015, 15(11): 7736–7741 https://doi.org/10.1021/acs.nanolett.5b03891
pmid: 26505784
16
L Pan, G Yu, D Zhai, et al.. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(24): 9287–9292 https://doi.org/10.1073/pnas.1202636109
pmid: 22645374
N P Tavandashti, M Ghorbani, A Shojaei. Controlled growth of hollow polyaniline structures: From nanotubes to microspheres. Polymer, 2013, 54(21): 5586–5594 https://doi.org/10.1016/j.polymer.2013.07.071
19
X Zhang, J Zhu, N Haldolaarachchige, et al.. Synthetic process engineered polyaniline nanostructures with tunable morphology and physical properties. Polymer, 2012, 53(10): 2109–2120 https://doi.org/10.1016/j.polymer.2012.02.042
20
C A Amarnath, J Kim, K Kim, et al.. Nanoflakes to nanorods and nanospheres transition of selenious acid doped polyaniline. Polymer, 2008, 49(2): 432–437 https://doi.org/10.1016/j.polymer.2007.12.005
21
Y E Miao, W Fan, D Chen, et al.. High-performance supercapacitors based on hollow polyaniline nanofibers by electrospinning. Applied Materials & Interfaces, 2013, 5(10): 4423–4428 https://doi.org/10.1021/am4008352
pmid: 23586693
H Gao, K Lian. Proton-conducting polymer electrolytes and their applications in solid supercapacitors: a review. RSC Advances, 2014, 4(62): 33091–33113 https://doi.org/10.1039/C4RA05151C
N A Choudhury, S Sampath, A K Shukla. Hydrogel-polymer electrolytes for electrochemical capacitors: an overview. Energy & Environmental Science, 2009, 2: 55–67 https://doi.org/10.1039/B811217G
26
M A Topinka, M W Rowell, D Goldhaber-Gordon, et al.. Charge transport in interpenetrating networks of semiconducting and metallic carbon nanotubes. Nano Letters, 2009, 9(5): 1866–1871 https://doi.org/10.1021/nl803849e
pmid: 19331424
27
L Yuan, X H Lu, X Xiao, et al.. Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano, 2012, 6(1): 656–661 https://doi.org/10.1021/nn2041279
pmid: 22182051
28
X Lu, Y Zeng, M Yu, et al.. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Advanced Materials, 2014, 26(19): 3148–3155 https://doi.org/10.1002/adma.201305851
pmid: 24496961
29
D Son, J Lee, S Qiao, et al.. Multifunctional wearable devices for diagnosis and therapy of movement disorders. Nature Nanotechnology, 2014, 9(5): 397–404 https://doi.org/10.1038/nnano.2014.38
pmid: 24681776
30
G E Asturias-Soberanis. Oxidative and polymeric acid doping of polyaniline and related Donnan phenomena. General Information, 1992
S Cho, S H Hwang, C Kim, et al.. Polyaniline porous counter-electrodes for high performance dye-sensitized solar cells. Journal of Materials Chemistry, 2012, 22(24): 12164–12171 https://doi.org/10.1039/c2jm30594a
33
A J Epstein, J M Ginder, F Zuo, et al.. Insulator-to-metal transition in polyaniline: Effect of protonation in emeraldine. Synthetic Metals, 1987, 21(1–3): 63–70 https://doi.org/10.1016/0379-6779(87)90067-1
34
J Germain, J M J Fréchet, F Svec. Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage. Journal of Materials Chemistry, 2007, 17(47): 4989–4997 https://doi.org/10.1039/b711509a
35
G Li, Z Zhang. Synthesis of dendritic polyaniline nanofibers in a surfactant gel. Macromolecules, 2004, 37(8): 2683–2685 https://doi.org/10.1021/ma035891k
36
P A Hassan, S N Sawant, N C Bagkar, et al.. Polyaniline nanoparticles prepared in rodlike micelles. Langmuir, 2004, 20(12): 4874–4880 https://doi.org/10.1021/la0498096
pmid: 15984244
37
M Laridjani, J P Pouget, E M Scherr, et al.. Amorphography - the relationship between amorphous and crystalline order. 1. The structural origin of memory effects in polyaniline. Macromolecules, 1992, 25(16): 4106–4113 https://doi.org/10.1021/ma00042a010
38
J Liu, M Zhou, L Z Fan, et al.. Porous polyaniline exhibits highly enhanced electrochemical capacitance performance. Electrochimica Acta, 2010, 55(20): 5819–5822 https://doi.org/10.1016/j.electacta.2010.05.030
39
J Nizioł, E Gondek, K J Plucinski. Characterization of solution and solid state properties of polyaniline processed from trifluoroacetic acid. Journal of Materials Science: Materials in Electronics, 2012, 23(12): 2194–2201 https://doi.org/10.1007/s10854-012-0749-y
40
M U Anu Prathap, B Thakur, S N Sawant, et al.. Synthesis of mesostructured polyaniline using mixed surfactants, anionic sodium dodecylsulfate and non-ionic polymers and their applications in H2O2 and glucose sensing. Colloids and Surfaces B: Biointerfaces, 2012, 89: 108–116 https://doi.org/10.1016/j.colsurfb.2011.09.002
pmid: 21958538
41
M Tagowska, B Pałys, K Jackowska. Polyaniline nanotubules — anion effect on conformation and oxidation state of polyaniline studied by Raman spectroscopy. Synthetic Metals, 2004, 142(1–3): 223–229 https://doi.org/10.1016/j.synthmet.2003.09.001
42
D Wei, C Kvarnström, T Lindfors, et al.. Polyaniline nanotubules obtained in room-temperature ionic liquids. Electrochemistry Communications, 2006, 8(10): 1563–1566 https://doi.org/10.1016/j.elecom.2006.07.024
43
A C Anbalagan, S N Sawant. Brine solution-driven synthesis of porous polyaniline for supercapacitor electrode application. Polymer, 2016, 87: 129–137 https://doi.org/10.1016/j.polymer.2016.01.049
44
Z Wei, Z Zhang, M Wan. Formation mechanism of self-assembled polyaniline micro/nanotubes. Langmuir, 2002, 18(3): 917–921 https://doi.org/10.1021/la0155799
45
S Cho, K H Shin, J Jang. Enhanced electrochemical performance of highly porous supercapacitor electrodes based on solution processed polyaniline thin films. Applied Materials & Interfaces, 2013, 5(18): 9186–9193 https://doi.org/10.1021/am402702y
pmid: 24032539
46
J Chen, H Wang, J Deng, et al.. Low-crystalline tungsten trioxide anode with superior electrochemical performance for flexible solid-state asymmetry supercapacitor. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(19): 8986–8991 https://doi.org/10.1039/C8TA01323C
47
J Yang, C Yu, S Liang, et al.. Bridging of ultrathin NiCo2O4 nanosheets and graphene with polyaniline: a theoretical and experimental study. Chemistry of Materials, 2016, 28(16): 5855–5863 https://doi.org/10.1021/acs.chemmater.6b02303
48
C A Amarnath, J H Chang, D Kim, et al.. Electrochemical supercapacitor application of electroless surface polymerization of polyaniline nanostructures. Materials Chemistry and Physics, 2009, 113(1): 14–17 https://doi.org/10.1016/j.matchemphys.2008.08.068
49
S Devan, V R Subramanian, R E White. Analytical solution for the impedance of a porous electrode. Journal of the Electrochemical Society, 2004, 151(6): A905–A913 https://doi.org/10.1149/1.1739218
50
A Sumboja, X Wang, J Yan, et al.. Nanoarchitectured current collector for high rate capability of polyaniline based supercapacitor electrode. Electrochimica Acta, 2012, 65: 190–195 https://doi.org/10.1016/j.electacta.2012.01.046
51
Q Tang, M Chen, G Wang, et al.. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 2015, 284: 400–408 https://doi.org/10.1016/j.jpowsour.2015.03.059
52
Q Tang, M Chen, L Wang, et al.. A novel asymmetric supercapacitors based on binder-free carbon fiber paper@nickel cobaltite nanowires and graphene foam electrodes. Journal of Power Sources, 2015, 273: 654–662 https://doi.org/10.1016/j.jpowsour.2014.09.139
53
Q Tang, W Wang, G Wang. The perfect matching between the low-cost Fe2O3 nanowire anode and the NiO nanoflake cathode significantly enhances the energy density of asymmetric supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(12): 6662–6670 https://doi.org/10.1039/C5TA00328H
54
N A Choudhury, A K Shukla, S Sampath, et al.. Cross-linked polymer hydrogel electrolytes for electrochemical capacitors. Journal of the Electrochemical Society, 2006, 153(3): A614–A620 https://doi.org/10.1149/1.2164810
55
H Li, Y He, V Pavlinek, et al.. MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(33): 17165–17171 https://doi.org/10.1039/C5TA04008F
56
J Zhao, H Lai, Z Lyu, et al.. Hydrophilic hierarchical nitrogen-doped carbon nanocages for ultrahigh supercapacitive performance. Advanced Materials, 2015, 27(23): 3541–3545 https://doi.org/10.1002/adma.201500945
pmid: 25931030
57
M Yu, Y Ma, J Liu, et al.. Polyaniline nanocone arrays synthesized on three-dimensional graphene network by electrodeposition for supercapacitor electrodes. Carbon, 2015, 87: 98–105 https://doi.org/10.1016/j.carbon.2015.02.017
58
L F Chen, Z H Huang, H W Liang, et al.. Bacterial-cellulose-derived carbon nanofiber@MnO2 and nitrogen-doped carbon nanofiber electrode materials: an asymmetric supercapacitor with high energy and power density. Advanced Materials, 2013, 25(34): 4746–4752 https://doi.org/10.1002/adma.201204949
pmid: 23716319
59
D Y Oh, Y J Nam, K H Park, et al.. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Advanced Energy Materials, 2015, 5(22): 1500865 https://doi.org/10.1002/aenm.201500865
60
J Li, Y Wang, J Tang, et al.. Direct growth of mesoporous carbon-coated Ni nanoparticles on carbon fibers for flexible supercapacitors. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(6): 2876–2882 https://doi.org/10.1039/C4TA05668J
61
X Xia, Y Zhang, D Chao, et al.. Tubular TiC fibre nanostructures as supercapacitor electrode material with stable cycling life and wide-temperature performance. Energy & Environmental Science, 2015, 8(5): 1559–1568 https://doi.org/10.1039/C5EE00339C
62
J Ding, H Wang, Z Li, et al.. Peanut shell hybrid sodium ion capacitor with extreme energy–power rivals lithium ion capacitors. Energy & Environmental Science, 2015, 8(3): 941–955 https://doi.org/10.1039/C4EE02986K
63
H Wang, L Zhi, K Liu, et al.. Thin-sheet carbon nanomesh with an excellent electrocapacitive performance. Advanced Functional Materials, 2015, 25(34): 5420–5427 https://doi.org/10.1002/adfm.201502025