Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2020, Vol. 14 Issue (3): 341-350   https://doi.org/10.1007/s11706-020-0516-6
  本期目录
An unusual superhydrophilic/superoleophobic sponge for oil--water separation
Jingwei LU1, Xiaotao ZHU1(), Xiao MIAO2, Bo WANG1, Yuanming SONG1, Guina REN1(), Xiangming LI1
1. School of Environmental and Materials Engineering, Yantai University, Yantai 264405, China
2. Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
 全文: PDF(2802 KB)   HTML
Abstract

Development of porous materials with anti-fouling and remote control- lability is highly desired for oil–water separation application yet still challenging. Herein, to address this challenge, a sponge with unusual superhydrophilicity/superoleophobicity and magnetic property was fabricated through a dip-coating process. To exploit its superhydrophilic/superoleophobic property, the obtained sponge was used as a reusable water sorbent scaffold to collect water from bulk oils without absorbing any oil. Owing to its magnetic property, the sponge was manipulated remotely by a magnet without touching it directly during the whole water collection process, which could potentially lower the cost of the water collection process. Apart from acting as a water-absorbing material, the sponge can also be used as affiliation material to separate water from oil–water mixture and oil in water emulsion selectively, when fixed into a cone funnel. This research provides a key addition to the field of oil–water separation materials.

Key wordssuperhydrophilicity    superoleophobicity    oil--water separation    sponge    water collection    anti-fouling property
收稿日期: 2020-06-02      出版日期: 2020-09-10
Corresponding Author(s): Xiaotao ZHU,Guina REN   
 引用本文:   
. [J]. Frontiers of Materials Science, 2020, 14(3): 341-350.
Jingwei LU, Xiaotao ZHU, Xiao MIAO, Bo WANG, Yuanming SONG, Guina REN, Xiangming LI. An unusual superhydrophilic/superoleophobic sponge for oil--water separation. Front. Mater. Sci., 2020, 14(3): 341-350.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-020-0516-6
https://academic.hep.com.cn/foms/CN/Y2020/V14/I3/341
Fig.1  
Fig.2  
Fig.3  
Treatment Water CA/(° ) Water SA/(° ) Dodecane CA/(° ) Dodecane SA/(° )
Original sponge 0 154.0 10.0
Thermal treatment at 200°C for 24 h 0 154.5 9.5
Subzero treatment at −18°C for 24 h 0 156.0 9
UV irradiation at 254 nm for 24 h 0 36.8 3.0
Knife scratching 0 154.5 9.5
Water jetting 0 152.5 12
Water immersing 0 154.1 9.8
Tab.1  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
  
Probe liquid Surface tension/(mN·m−1) CA/(° ) SA/(° )
Water 72.1 0
Dichloromethane 46 162±1 <5
Rapeseed oil 35.7 160±0.5 <5
Toluene 28.8 159±1 7±1
Hexadecane 27.5 154±2 9±2
Dodecane 25.3 152±1 10±1
  
  
  
1 M Schrope. Oil spill: Deep wounds. Nature, 2011, 472(7342): 152–154
https://doi.org/10.1038/472152a pmid: 21490648
2 B Wang, W Liang, Z Guo, et al.. Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015, 44(1): 336–361
https://doi.org/10.1039/C4CS00220B pmid: 25311259
3 J Ge, H Y Zhao, H W Zhu, et al.. Advanced sorbents for oil-spill cleanup: recent advances and future perspectives. Advanced Materials, 2016, 28(47): 10459–10490
https://doi.org/10.1002/adma.201601812 pmid: 27731513
4 A B Nordvik, J L Simmons, K R Bitting, et al.. Oil and water separation in marine oil spill clean-up operations. Spill Science & Technology Bulletin, 1996, 3(3): 107–122
https://doi.org/10.1016/S1353-2561(96)00021-7
5 Z Chu, Y Feng, S Seeger. Oil/water separation with selective superantiwetting/superwetting surface materials. Angewandte Chemie International Edition, 2015, 54(8): 2328–2338
https://doi.org/10.1002/anie.201405785 pmid: 25425089
6 Y B Peng, Z G Guo. Recent advances in biomimetic thin membranes applied in emulsified oil/water separation. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(41): 15749–15770
https://doi.org/10.1039/C6TA06922C
7 Q Ma, H Cheng, A G Fane, et al.. Recent development of advanced materials with special wettability for selective oil/water separation. Small, 2016, 12(16): 2186–2202
https://doi.org/10.1002/smll.201503685 pmid: 27000640
8 B Ge, Z Zhang, X Zhu, et al.. A graphene coated cotton for oil/water separation. Composites Science and Technology, 2014, 102: 100–105
https://doi.org/10.1016/j.compscitech.2014.07.020
9 X Zhu, Z Zhang, B Ge, et al.. A versatile approach to produce superhydrophobic materials used for oil–water separation. Journal of Colloid and Interface Science, 2014, 432: 105–108
https://doi.org/10.1016/j.jcis.2014.06.056 pmid: 25086383
10 J Li, R Kang, Y Zhang, et al.. Facile fabrication of superhydrophobic meshes with different water adhesion and their influence on oil/water separation. RSC Advances, 2016, 6(93): 90824–90830
https://doi.org/10.1039/C6RA17153B
11 G Ren, Y Song, X Li, et al.. A superhydrophobic copper mesh as an advanced platform for oil–water separation. Applied Surface Science, 2018, 428: 520–525
https://doi.org/10.1016/j.apsusc.2017.09.140
12 H Guan, Z Cheng, X Wang. Highly compressible wood sponges with a spring-like lamellar structure as effective and reusable oil absorbents. ACS Nano, 2018, 12(10): 10365–10373
https://doi.org/10.1021/acsnano.8b05763 pmid: 30272949
13 T L Yu, S X Lu, W G Xu. A reliable filter for oil–water separation: Bismuth coated superhydrophobic/superoleophilic iron mesh. Journal of Alloys and Compounds, 2018, 769: 576–587
https://doi.org/10.1016/j.jallcom.2018.07.305
14 Z Xue, S Wang, L Lin, et al.. A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Advanced Materials, 2011, 23(37): 4270–4273
https://doi.org/10.1002/adma.201102616 pmid: 22039595
15 A K Kota, G Kwon, W Choi, et al.. Hygro-responsive membranes for effective oil–water separation. Nature Communications, 2012, 3(1): 1025
https://doi.org/10.1038/ncomms2027 pmid: 22929782
16 K He, H Duan, G Y Chen, et al.. Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: overcoming the imperative challenge of oil–water separation membranes. ACS Nano, 2015, 9(9): 9188–9198
https://doi.org/10.1021/acsnano.5b03791 pmid: 26260326
17 R Yang, P Moni, K K Gleason. Ultrathin zwitter ionic coatings for roughness-independent underwater superoleophobicity and gravity-driven oil–water separation. Advanced Materials Interfaces, 2015, 2(2): 1400489
https://doi.org/10.1002/admi.201400489
18 S Gao, J Sun, P Liu, et al.. A robust polyionized hydrogel with an unprecedented underwater anti-crude-oil-adhesion property. Advanced Materials, 2016, 28(26): 5307–5314
https://doi.org/10.1002/adma.201600417 pmid: 27159880
19 S Zhang, G Jiang, S Gao, et al.. Cupric phosphate nanosheets-wrapped inorganic membranes with superhydrophilic and outstanding anticrude oil-fouling property for oil/water separation. ACS Nano, 2018, 12(1): 795–803
https://doi.org/10.1021/acsnano.7b08121 pmid: 29298377
20 H C Yang, Y Xie, H Chan, et al.. Crude-oil-repellent membranes by atomic layer deposition: oxide interface engineering. ACS Nano, 2018, 12(8): 8678–8685
https://doi.org/10.1021/acsnano.8b04632 pmid: 30107114
21 R N Wenzel. Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936, 28(8): 988–994
https://doi.org/10.1021/ie50320a024
22 Y C Jung, B Bhushan. Wetting behavior of water and oil droplets in three-phase interfaces for hydrophobicity/philicity and oleophobicity/philicity. Langmuir, 2009, 25(24): 14165–14173
https://doi.org/10.1021/la901906h pmid: 19637877
23 J Yang, Z Zhang, X Xu, et al.. Superhydrophilic–superoleophobic coatings. Journal of Materials Chemistry, 2012, 22(7): 2834– 2837
https://doi.org/10.1039/c2jm15987b
24 Z Xu, Y Zhao, H Wang, et al.. A superamphiphobic coating with an ammonia-triggered transition to superhydrophilic and superoleophobic for oil–water separation. Angewandte Chemie International Edition, 2015, 54(15): 4527–4530
https://doi.org/10.1002/anie.201411283 pmid: 25694216
25 Q Zhu, F Tao, Q Pan. Fast and selective removal of oils from water surface via highly hydrophobic core–shell Fe2O3@C nanoparticles under magnetic field. ACS Applied Materials & Interfaces, 2010, 2(11): 3141–3146
https://doi.org/10.1021/am1006194 pmid: 20942429
26 P Calcagnile, D Fragouli, I S Bayer, et al.. Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano, 2012, 6(6): 5413–5419
https://doi.org/10.1021/nn3012948 pmid: 22577733
27 N Chen, Q Pan. Versatile fabrication of ultralight magnetic foams and application for oil–water separation. ACS Nano, 2013, 7(8): 6875–6883
https://doi.org/10.1021/nn4020533 pmid: 23875978
28 F M Fowkes. Attractive force at interface. Industrial & Engineering Chemistry, 1964, 56(12): 40–52
https://doi.org/10.1021/ie50660a008
29 D Owens, R Wendt. Estimation of the surface free energy of polymers. Journal of Applied Polymer Science, 1969, 13(8): 1741–1747
https://doi.org/10.1002/app.1969.070130815
30 Y Wang, J Di, L Wang, et al.. Infused-liquid-switchable porous nanofibrous membranes for multiphase liquid separation. Nature Communications, 2017, 8(1): 575
https://doi.org/10.1038/s41467-017-00474-y
31 X Tian, T Verho, R H A Ras. Moving superhydrophobic surfaces toward real-world applications. Science, 2016, 352(6282): 142–143
https://doi.org/10.1126/science.aaf2073 pmid: 27124437
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed