Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2020, Vol. 14 Issue (4): 353-372   https://doi.org/10.1007/s11706-020-0530-8
  本期目录
A review on graphene-based materials as versatile cancer biomarker sensors
Shalmali BASU, Kamalika SEN()
Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
 全文: PDF(420 KB)   HTML
Abstract

Early detection of cancer has multitude of advantages like early diagnosis, reduced risk, ease in the treatment and follow up of recurrence. New and developed techniques are always under research to control the spreading malignancy. Graphene is an emerging star in biomedical field as it exhibits exceptional thermal, electrical and optical properties. Here, we review application of graphene-based materials in developing biosensing devices for the detection of different cancer biomarkers at concentrations down to sub-toxic levels. Different analytical methodologies chosen for sensing have been undertaken and their performance and background have been discussed. The trend of use of these methodologies can also be perceived from the graphical data presented.

Key wordsgraphene    cancer biomarker    biosensing    analytical methods
收稿日期: 2020-07-20      出版日期: 2020-12-09
Corresponding Author(s): Kamalika SEN   
 引用本文:   
. [J]. Frontiers of Materials Science, 2020, 14(4): 353-372.
Shalmali BASU, Kamalika SEN. A review on graphene-based materials as versatile cancer biomarker sensors. Front. Mater. Sci., 2020, 14(4): 353-372.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-020-0530-8
https://academic.hep.com.cn/foms/CN/Y2020/V14/I4/353
Fig.1  
Fig.2  
Graphene material Type of cancer/cell Analyte Detection method LOD Ref.
Ag-rGO/CysA-AuNPs breast cancer CA15-3 ChA 15 U·mL−1 [32]
Ag-TiO2/rGO colorectal cancer CEA stochastic mode, DPV 20.5 fg·mL−1 [33]
Amino FG-THI-AuNPs colon cancer CEA DPV 2 pg·mL−1 [34]
lung cancer NSE 10 pg·mL−1
Au-GO breast cancer ErbB2 amperometry 0.001 pmol·L−1 [35]
Au/MnO2/ErGO/CF cervical cancer H2O2 amperometry 2 mmol·L−1 [36]
AuNFs/IL-GFW breast cancer H2O2 amperometry 100 nmol·L−1 [37]
AuNPs/Fc-ErGO breast cancer CA15-3 DPVa) 0.015 U·mL−1 [38]
AuNPs-GO breast cancer ErbB2 amperometry 0.16 nmol·L−1 [39]
CD24 0.23 nmol·L−1
AuNPs/GO-MWCNTs/GCE yolk sac, hepatocellular, liver metastasis from gastric cancer, nasopharyngeal, testicular cancer AFP DPV 3 pg·mL−1 [40]
AuPtPd/rGO breast cancer H2O2 amperometry 2 nmol·L−1 [30]
Au-TH-Gr-TH-Au testicular cancer AFP CV 0.05 ng·mL−1 [41]
Au-VBG/BDD colon cancer CEA DPV 0.15 pg·mL−1 [42]
ovarian cancer CA125 0.09 mU·mL−1
CGS-TB/PB colon cancer CEA DPV 0.1 ng·mL−1 [43]
testicular cancer AFP 0.05 ng·mL−1
CQDs@PDA@PtNCs-NG DNA damage 8-OH-dG DPV 0.45 & 0.85 µmol·L−1 [44]
CuS-rGO breast cancer CA15-3 DPV 0.3 U·mL−1 [45]
ErGO-SWCNTs breast cancer HER2 EIS 50 fg·mL−1 [46]
Fe2N NPs@rGO colon cancer, oxidative stress, etc. 4-NQO DPV 9.24 nmol·L−1 [47]
Fe3O4@GO prostate cancer PSA amperometry 15 fg·mL−1 [48]
PSMA 4.8 fg·mL−1
GF-nTiO2 breast cancer ErbB2 DPV, EIS [31]
GNS testicular cancer AFP DPV 0.5 pg·mL−1 [49]
colon cancer CEA 0.8 pg·mL−1
breast/prostate/colorectal cancer, NSCLC uPAR CV 4.8 fmol·L−1 [50]
GO colon cancer CEA amperometry 3.2 fg·mL−1 [51]
testicular cancer AFP DPV 0.001 ng·mL−1 [52]
colon cancer CEA 0.005 ng·mL−1
ovarian cancer CA125 0.001 ng·mL−1
breast cancer CA15-3 0.005 ng·mL−1
liver cancer EpCAM, GPC3 SWV 10 cells·mL−1 [53]
prostate cancer PSA DPV 0.5 pg·mL−1 [54]
GO-Ab2 prostate cancer PSA SWV <4 ng·mL−1 [55]
GO/AuNPs prostate cancer PSA SWV 0.2b) & 0.07c) ng·mL−1 [56]
MTC calcitonin SWV 0.7 pg·mL−1 [57]
GO/AuNR breast cancer miRNA-155 DPV 0.6 fmol·L−1 [58]
GO−COOH-SPCE breast/gastric/colorectal/lung/prostate/ovarian/pancreatic/bladder carcinoma MUC1 DPV 0.04 U·mL−1 [25]
GO/ITO breast cancer CA15-3 electroreduction based redox cycling system 0.1 U·mL−1 [59]
GO-ssDNA oral cancer VEGF DPV 50 pg·mL−1 [60]
prostate cancer PSA 1 ng·mL−1
Gr-P3ABA prostate cancer PSA DPV 0.13 pg·mL−1 [61]
GQD/AuNPs/NG colon cancer CEA DPV 3.2 fg·mL−1 [62]
Gr/AuNP choroid plexus carcinoma, Wilms tumor, malignant phyllodes tumors p53 CV, EIS 0.6 fmol·L−1 [63]
Gr/AuNP/Ab-HRP metastatic HPC cells Du-145 DPV 20 cells·mL−1 [26]
Gr/MBs-Ab1/CEA/Ab2-AuNPs-HRP colon cancer CEA CV 5 ng·mL−1 [64]
Gr-modified graphite electrode CLL, AML, glioblastoma/breast/lung/prostate cancer miRNA-21 DPV, EIS 3.12 pmol [65]
GS liver/testicular cancer AFP ChA 0.03 ng·mL−1 [66]
prostate cancer TH, HRP, PSA amperometry 1 pg·mL−1 [67]
GS-CHI/SPCE testicular cancer AFP SWV, CV 0.02 ng·mL−1 [68]
MGO brain tumors, lung/breast/gastrointestinal cancer VEGF DPV 31.25 pg·mL−1 [69]
mNPs@rGO breast cancer ErbB2 EIS [70]
ncCeO2-rGO oral cancer Cyfra-21-1 DPV 0.625 pg·mL−1 [71]
NFG/AgNPs/PANI breast cancer miRNA-21 DPV 0.2 fmol·L−1 [72]
NGQD@NC@Pd HNSs breast cancer H2O2 amperometry 20 nmol·L−1 [73]
NGS breast cancer CA15-3 CV 0.012 U·mL−1 [74]
NH2-aptamer/GO/GCE testicular cancer AFP CV 3 pg·mL−1 [75]
PANI/Gr-SPE ovarian cancer CA125 EIS 0.923 ng·μL−1 [29]
PBSE/Gr/Cu colon cancer CEA EIS 0.23 ng·mL−1 [76]
PDA-rGO colon cancer CEA amperometry 0.23 pg·mL−1 [77]
PdAuPt/COOH-rGO colon cancer CEA DPV 8 pg·mL−1 [78]
prostate cancer PSA 2 pg·mL−1
Pd@rGO/ITO prostate cancer PSA ChA 10 pg·mL−1 [28]
PP3CA/ErGO breast cancer BRCA1 DPV, EIS 3 fmol·L−1 [79]
QD-GS prostate cancer PSA SWV 3 pg·mL−1 [80]
rGO breast cancer HER2 LSV 8.5d) & 0.16e) ng·mL−1 [81]
rGO-Ag breast cancer H2O2 LSV 0.136 μmol·L−1 [82]
ChA 0.003 & 0.056f) mmol·L−1
rGO-AuNPs prostate cancer PSA SWV 2 pg·mL−1 [83]
EIS 60 pg·mL−1
rGO/ssDNA-OMC/Ni-OTC NPs lung cancer EGFR exon 21 L858R DPV 120 nmol·L−1 [84]
rGO-TEPA bladder cancer NMP22 DPV 0.01 U·mL−1 [85]
S-GS colorectal/pancreatic/gastric/bladder cancer CEA SWV 30 fg·mL−1 [86]
cervical/bladder carcinoma NMP22 25 fg·mL−1
SrGO oxidative DNA damage 8-OH-dG DPV ~1 nmol·L−1 [87]
TCPP/CCG breast/liver/lung cancer, soft tissue sarcoma, leukemia, lymphoma cyclin A2 EIS, CV 0.32 pmol·L−1 [88]
ZrO2-rGO oral cancer Cyfra-21-1 DPV 0.122 ng·mL−1 [89]
Tab.1  
Graphene material Type of cancer/cell Analyte Detection method LOD Ref.
Au-GO breast cancer ErbB2 SPR 75 & 10 pmol·L−1 [35]
prostate cancer PSA immunofluorescence analysis 0.24 fg·mL−1 [98]
GO testicular cancer AFP photometric assay [52]
breast/liver/lung cancer, soft tissue sarcoma, leukemia, lymphoma cyclin A2 fluorescence assay 0.5 nmol·L−1 [92]
lung/breast cancer, astrocytoma, melanoma, etc. CD63, EpCAM fluorescence assay 2.1×104 particles·μL−1 [99]
breast cancer HER2 immunofluorescence analysis [100]
nasopharyngeal carcinoma miR-205 fluorescence assay 1.18 nmol·L−1 [101]
prostate cancer PCA3 fluorescence assay 500 fmol·L−1 [102]
breast cancer SKBR3 fluorescence assay [103]
prostate cancer LNCaP
colon cancer SW-948
GO−COOH lung cancer (NSCLC) CK19 SPR 1 fg·mL−1 [96]
GO-FLS7 CSCs CD133 fluorescence assay 7.91 nmol·L−1 [91]
GO-graphene liver cancer Hep-G2, ASGP-Rs fluorescence assay 534 cells·mL−1 [104]
GQD ovarian cancer CA125 CRET 0.05 U·mL−1 [97]
GQD-PEG-P breast/ovarian cancer miRNA-155 of A549 cells fluorescence assay [93]
Graphene oxidative DNA damage 8-OH-dG fluorescence assay 0.1 ng·mL−1 [105]
breast cancer BRCA1, BRCA2 SPR [95]
Graphene-coated SPR chip human epithelial-derived tumors FAP SPR 5 fmol·L−1 [106]
GRD-GOD colon cancer CEA PEC assay 5.65 fg·mL−1 [94]
N,S/GQDs liver cancer Hep G2, A549 fluorescence assay 1.19 nmol·L−1 [93]
RGD-pyrene-GO breast cancer integrin αvβ3 fluorescence assay [34]
rGO different tumor areas PEDOT, D-PSM, CCDP/BODIPY, C/B-PgP fluorescence assay [107]
rGO film prostate cancer PC3, 22Rv1 fluorescence assay [108]
Tab.2  
Graphene material Type of cancer/cell Analyte LOD Ref.
CdS nanocrystals/tGO-AuNPs choroid plexus carcinoma, Wilms tumor, malignant phyllodes tumors, etc. p53 4 fg·mL−1 [111]
GNSs colon cancer CEA 0.8 pg·mL−1 [49]
testicular cancer AFP 0.5 pg·mL−1
GNSs@Fe3O4 prostate cancer PSA 0.72 pg·mL−1 [112]
Graphene-CHI/GC prostate cancer PSA 8 pg·mL−1 [110]
rGO/AuNPs-CdS:Eu QDs testicular cancer AFP 0.05 pg·mL−1 [109]
tGO colon cancer CEA 1.90 fg·mL−1 [113]
testicular cancer AFP 1.36 fg·mL−1
ZnO NPs@graphene-GOD colon cancer CEA 3.3 pg·mL−1 [114]
Tab.3  
Graphene material Type of cancer Analyte Methodology/Detection method LOD Ref.
dBSA/graphene colon cancer CEA GFET-based biosensing 337.58 fg·mL−1 [119]
GO-UCNPs pancreatic cancer IL-6 GFET-based biosensing 12 pmol·L−1 [116]
Graphene lung cancer IL-6 GFET-based biosensing 2.78 pg·mL−1 (139 fmol·L−1) [120]
PtNP/GFETs breast cancer HER3 GFET-based biosensing 300 fg·mL−1 [118]
rGO ovarian cancer CA125 GFET-based biosensing 5.0×10−10 U·mL−1 [121]
lung cancer VOCa) chemo resistive property based detection some hundreds of ppb to slightly more than a thousand hundred ppm [122]
rGO-SiO2 NPs breast cancer HER2 GFET-based biosensing 1 pmol·L−1 [117]
EGFR 100 pmol·L−1
SCG lung cancer ANXA2, ENO1, VEGF resistant shift 0.1 pg·mL−1 [69]
Tab.4  
Graphene material Type of cancer Analyte Detection method LOD Ref.
GO nanosheets colon cancer CEA potentiometry 9.4 pg·mL−1 [124]
GOs ovarian cancer carnitine potentiometry 41a) & 50b) mmol·L−1 [126]
PGOs breast cancer HeLa, A549, MDA-MB-231 LAPS-based sensing [125]
Tab.5  
1 D Akinwande, C J Brennan, J S Bunch, et al.. A review on mechanics and mechanical properties of 2D materials — Graphene and beyond. Extreme Mechanics Letters, 2017, 13: 42–77
https://doi.org/10.1016/j.eml.2017.01.008
2 C Soldano, A Mahmood, E Dujardin. Production, properties and potential of graphene. Carbon, 2010, 48(8): 2127–2150
https://doi.org/10.1016/j.carbon.2010.01.058
3 T P D Shareena, D McShan, A K Dasmahapatra, et al.. A review on graphene-based nanomaterials in biomedical applications and risks in environment and health. Nano-Micro Letters, 2018, 10(3): 53
https://doi.org/10.1007/s40820-018-0206-4 pmid: 30079344
4 E Cobas, A L Friedman, O M Van’t Erve, et al.. Graphene as a tunnel barrier: graphene-based magnetic tunnel junctions. Nano Letters, 2012, 12(6): 3000–3004
https://doi.org/10.1021/nl3007616 pmid: 22577860
5 Z Chen, W Ren, L Gao, et al.. Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition. Nature Materials, 2011, 10(6): 424–428
https://doi.org/10.1038/nmat3001 pmid: 21478883
6 K P Loh, Q Bao, P K Ang, et al.. The chemistry of graphene. Journal of Materials Chemistry, 2010, 20(12): 2277–2289
https://doi.org/10.1039/b920539j
7 G Tsoukleri, J Parthenios, K Papagelis, et al.. Subjecting a graphene monolayer to tension and compression. Small, 2009, 5(21): 2397–2402
https://doi.org/10.1002/smll.200900802 pmid: 19642092
8 A Eftekhari, P Jafarkhani. Curly graphene with specious interlayers displaying superior capacity for hydrogen storage. The Journal of Physical Chemistry C, 2013, 117(48): 25845–25851
https://doi.org/10.1021/jp410044v
9 E Pop, V Varshney, A K Roy. Thermal properties of graphene: Fundamentals and applications. MRS Bulletin, 2012, 37(12): 1273–1281
https://doi.org/10.1557/mrs.2012.203
10 A H Castro Neto, F Guinea, N M R Peres, et al.. The electronic properties of graphene. Reviews of Modern Physics, 2009, 81(1): 109–162
https://doi.org/10.1103/RevModPhys.81.109
11 J H Chen, C Jang, S Xiao, et al.. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nature Nanotechnology, 2008, 3(4): 206–209
https://doi.org/10.1038/nnano.2008.58 pmid: 18654504
12 J S Bunch. Mechanical and Electrical Properties of Graphene Sheets. Ithaca, NY: Cornell University, 2008
13 Q Bao, K P Loh. Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano, 2012, 6(5): 3677–3694
https://doi.org/10.1021/nn300989g pmid: 22512399
14 J Plutnar, M Pumera, Z Sofer. The chemistry of CVD graphene. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2018, 6(23): 6082–6101
https://doi.org/10.1039/C8TC00463C
15 H Shu, X M Tao, F Ding. What are the active carbon species during graphene chemical vapor deposition growth? Nanoscale, 2015, 7(5): 1627–1634
https://doi.org/10.1039/C4NR05590J pmid: 25553809
16 Z Jin, T P McNicholas, C J Shih, et al.. Click chemistry on solution-dispersed graphene and monolayer CVD graphene. Chemistry of Materials, 2011, 23(14): 3362–3370
https://doi.org/10.1021/cm201131v
17 S Park, R S Ruoff. Chemical methods for the production of graphenes. Nature Nanotechnology, 2009, 4(4): 217–224
https://doi.org/10.1038/nnano.2009.58 pmid: 19350030
18 F Withers, T H Bointon, M F Craciun, et al.. All-graphene photodetectors. ACS Nano, 2013, 7(6): 5052–5057
https://doi.org/10.1021/nn4005704 pmid: 23597182
19 J D Fowler, M J Allen, V C Tung, et al.. Practical chemical sensors from chemically derived graphene. ACS Nano, 2009, 3(2): 301–306
https://doi.org/10.1021/nn800593m pmid: 19236064
20 S E Zhu, R Shabani, J Rho, et al.. Graphene-based bimorph microactuators. Nano Letters, 2011, 11(3): 977–981
https://doi.org/10.1021/nl103618e pmid: 21280657
21 L Wu, X Qu. Cancer biomarker detection: recent achievements and challenges. Chemical Society Reviews, 2015, 44(10): 2963–2997
https://doi.org/10.1039/C4CS00370E pmid: 25739971
22 B Wang, U Akiba, J I Anzai. Recent progress in nanomaterial-based electrochemical biosensors for cancer biomarkers: A review. Molecules, 2017, 22(7): 1048
https://doi.org/10.3390/molecules22071048 pmid: 28672780
23 B D Malhotra, S Kumar, C M Pandey. Nanomaterials based biosensors for cancer biomarker detection. Journal of Physics Conference Series, 2016, 704: 012011
https://doi.org/10.1088/1742-6596/704/1/012011
24 T Pasinszki, M Krebsz, T T Tung, et al.. Carbon nanomaterial based biosensors for non-invasive detection of cancer and disease biomarkers for clinical diagnosis. Sensors, 2017, 17(8): 1919
https://doi.org/10.3390/s17081919 pmid: 28825646
25 S Rauf, G K Mishra, J Azhar, et al.. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Analytical Biochemistry, 2018, 545: 13–19
https://doi.org/10.1016/j.ab.2018.01.007 pmid: 29339058
26 A Yadegari, M Omidi, F Yazdian, et al.. An electrochemical cytosensor for ultrasensitive detection of cancer cells using modified graphene–gold nanostructures. RSC Advances, 2017, 7(4): 2365–2372
https://doi.org/10.1039/C6RA25938C
27 A Ravalli, D Voccia, I Palchetti, et al.. Electrochemical, electrochemiluminescence, and photoelectrochemical aptamer-based nanostructured sensors for biomarker analysis. Biosensors, 2016, 6(3): 39
https://doi.org/10.3390/bios6030039 pmid: 27490578
28 V Kumar, S Srivastava, S Umrao, et al.. Nanostructured palladium-reduced graphene oxide platform for high sensitive, label free detection of a cancer biomarker. RSC Advances, 2014, 4(5): 2267–2273
https://doi.org/10.1039/C3RA41986J
29 A Gazze, R Ademefun, R S Conlan, et al.. Electrochemical impedence spectroscopy enabled CA125 detection; toward early ovarian cancer diagnosis using graphene biosensors. Journal of Interdisciplinary Nanomedicine, 2018, 3(2): 82–88
https://doi.org/10.1002/jin2.40
30 W Dong, Y Ren, Z Bai, et al.. Trimetallic AuPtPd nanocomposites platform on graphene: Applied to electrochemical detection and breast cancer diagnosis. Talanta, 2018, 189: 79–85
https://doi.org/10.1016/j.talanta.2018.06.067 pmid: 30086978
31 M A Ali, K Mondal, Y Jiao, et al.. Microfluidic immuno-biochip for detection of breast cancer biomarkers using hierarchical composite of porous graphene and titanium dioxide nanofibers. ACS Applied Materials & Interfaces, 2016, 8(32): 20570–20582
https://doi.org/10.1021/acsami.6b05648 pmid: 27442623
32 S Hassanpour, M Hasanzadeh, A Saadati, et al.. A novel paper based immunoassay of breast cancer specific carbohydrate (CA 15.3) using silver nanoparticles-reduced graphene oxide nano-ink technology: A new platform to construction of microfluidic paper-based analytical devices (μPADs) towards biomedical analysis. Microchemical Journal, 2019, 146: 345–358
https://doi.org/10.1016/j.microc.2019.01.018
33 L A Gugoasa, A J M AĺOgaidi, R I Stefan-van Staden, et al.. Multimode microsensors based on Ag–TiO2–graphene materials used for the molecular recognition of carcinoembryonic antigen in whole blood samples. RSC Advances, 2017, 7(45): 28419–28426
https://doi.org/10.1039/C7RA03842A
34 Y Wang, J Luo, J Liu, et al.. Label-free microfluidic paper-based electrochemical aptasensor for ultrasensitive and simultaneous multiplexed detection of cancer biomarkers. Biosensors & Bioelectronics, 2019, 136: 84–90
https://doi.org/10.1016/j.bios.2019.04.032 pmid: 31039491
35 M A Ali, S Tabassum, Q Wang, et al.. Integrated dual-modality microfluidic sensor for biomarker detection using lithographic plasmonic crystal. Lab on a Chip, 2018, 18(5): 803–817
https://doi.org/10.1039/C7LC01211J pmid: 29431801
36 A A M Abdurhman, Y Zhang, G Zhang, et al.. Hierarchical nanostructured noble metal/metal oxide/graphene-coated carbon fiber: in situ electrochemical synthesis and use as microelectrode for real-time molecular detection of cancer cells. Analytical and Bioanalytical Chemistry, 2015, 407(26): 8129–8136
https://doi.org/10.1007/s00216-015-8989-3 pmid: 26359235
37 Y Zhang, J Xiao, Q Lv, et al.. In situ electrochemical sensing and real-time monitoring live cells based on freestanding nanohybrid paper electrode assembled from 3D functionalized graphene framework. ACS Applied Materials & Interfaces, 2017, 9(44): 38201–38210
https://doi.org/10.1021/acsami.7b08781 pmid: 28727416
38 C Li, X Qiu, K Deng, et al.. Electrochemical co-reduction synthesis of Au/ferrocene–graphene nanocomposites and their application in an electrochemical immunosensor of a breast cancer biomarker. Analytical Methods, 2014, 6(22): 9078–9084
https://doi.org/10.1039/C4AY01838A
39 A A Saeed, J L A Sánchez, C K O’Sullivan, et al.. DNA biosensors based on gold nanoparticles-modified graphene oxide for the detection of breast cancer biomarkers for early diagnosis. Bioelectrochemistry, 2017, 118: 91–99
https://doi.org/10.1016/j.bioelechem.2017.07.002 pmid: 28802177
40 Y S Gao, X F Zhu, T T Yang, et al.. Sensitive electrochemical determination of α-fetoprotein using a glassy carbon electrode modified with in-situ grown gold nanoparticles, graphene oxide and MWCNTs acting as signal amplifiers. Microchimica Acta, 2015, 182(11–12): 2027–2035
https://doi.org/10.1007/s00604-015-1537-1
41 H Chen, B Zhang, Y Cui, et al.. One-step electrochemical immunoassay of biomarker based on nanogold-functionalized graphene sensing platform. Analytical Methods, 2011, 3(7): 1615–1621
https://doi.org/10.1039/c1ay05172e
42 H Li, J Qin, M Li, et al.. Gold-nanoparticle-decorated boron-doped graphene/BDD electrode for tumor marker sensor. Sensors and Actuators B: Chemical, 2020, 302: 127209
https://doi.org/10.1016/j.snb.2019.127209
43 X Chen, X Jia, J Han, et al.. Electrochemical immunosensor for simultaneous detection of multiplex cancer biomarkers based on graphene nanocomposites. Biosensors & Bioelectronics, 2013, 50: 356–361
https://doi.org/10.1016/j.bios.2013.06.054 pmid: 23891798
44 Q Zhang, Q Zhao, M Fu, et al.. Carbon quantum dots encapsulated in super small platinum nanocrystals core–shell architecture/nitrogen doped graphene hybrid nanocomposite for electrochemical biosensing of DNA damage biomarker-8-hydroxy-2′-deoxyguanosine. Analytica Chimica Acta, 2019, 1047: 9–20
https://doi.org/10.1016/j.aca.2018.09.039 pmid: 30567668
45 J Amani, A Khoshroo, M Rahimi-Nasrabadi. Electrochemical immunosensor for the breast cancer marker CA 15-3 based on the catalytic activity of a CuS/reduced graphene oxide nanocomposite towards the electrooxidation of catechol. Microchimica Acta, 2018, 185(1): 79
https://doi.org/10.1007/s00604-017-2532-5 pmid: 29594363
46 P F Rostamabadi, E Heydari-Bafrooei. Impedimetric aptasensing of the breast cancer biomarker HER2 using a glassy carbon electrode modified with gold nanoparticles in a composite consisting of electrochemically reduced graphene oxide and single-walled carbon nanotubes. Microchimica Acta, 2019, 186(8): 495
https://doi.org/10.1007/s00604-019-3619-y pmid: 31270702
47 U Rajaji, A Muthumariyappan, S M Chen, et al.. A novel electrochemical sensor for the detection of oxidative stress and cancer biomarker (4-nitroquinoline N-oxide) based on iron nitride nanoparticles with multilayer reduced graphene nanosheets modified electrode. Sensors and Actuators B: Chemical, 2019, 291: 120–129
https://doi.org/10.1016/j.snb.2019.04.041
48 M Sharafeldin, G W Bishop, S Bhakta, et al.. Fe3O4 nanoparticles on graphene oxide sheets for isolation and ultrasensitive amperometric detection of cancer biomarker proteins. Biosensors & Bioelectronics, 2017, 91: 359–366
https://doi.org/10.1016/j.bios.2016.12.052 pmid: 28056439
49 Q Li, D Tang, F Lou, et al.. Simultaneous electrochemical multiplexed immunoassay of biomarkers based on multifunctionalized graphene nanotags. ChemElectroChem, 2014, 1(2): 441–447
https://doi.org/10.1002/celc.201300039
50 A Roberts, P P Tripathi, S Gandhi. Graphene nanosheets as an electric mediator for ultrafast sensing of urokinase plasminogen activator receptor-A biomarker of cancer. Biosensors & Bioelectronics, 2019, 141: 111398
https://doi.org/10.1016/j.bios.2019.111398 pmid: 31176112
51 Z Tan, L Cao, Y Yang, et al.. Amperometric immunoassay for the carcinoembryonic antigen by using a peroxidase mimic consisting of palladium nanospheres functionalized with glutathione-capped gold nanoparticles on graphene oxide. Microchimica Acta, 2019, 186(11): 693
https://doi.org/10.1007/s00604-019-3799-5 pmid: 31605244
52 Y Wu, P Xue, Y Kang, et al.. Paper-based microfluidic electrochemical immunodevice integrated with nanobioprobes onto graphene film for ultrasensitive multiplexed detection of cancer biomarkers. Analytical Chemistry, 2013, 85(18): 8661–8668
https://doi.org/10.1021/ac401445a pmid: 23937646
53 Y Wu, P Xue, Y Kang, et al.. Highly specific and ultrasensitive graphene-enhanced electrochemical detection of low-abundance tumor cells using silica nanoparticles coated with antibody-conjugated quantum dots. Analytical Chemistry, 2013, 85(6): 3166–3173
https://doi.org/10.1021/ac303398b pmid: 23402311
54 K Yang, L Qi, Z Gao, et al.. A novel electrochemical immunosensor for prostate-specific antigen based on noncovalent nanocomposite of ferrocene monocarboxylic acid with graphene oxide. Analytical Letters, 2014, 47(13): 2266–2280
https://doi.org/10.1080/00032719.2014.902463
55 F Qu, T Li, M Yang. Colorimetric platform for visual detection of cancer biomarker based on intrinsic peroxidase activity of graphene oxide. Biosensors & Bioelectronics, 2011, 26(9): 3927–3931
https://doi.org/10.1016/j.bios.2011.03.013 pmid: 21482098
56 Z A Jonous, J S Shayeh, F Yazdian, et al.. An electrochemical biosensor for prostate cancer biomarker detection using graphene oxide–gold nanostructures. Engineering in Life Sciences, 2019, 19(3): 206–216
https://doi.org/10.1002/elsc.201800093
57 N A Alarfaj, M F El-Tohamy. A label-free electrochemical immunosensor based on gold nanoparticles and graphene oxide for the detection of tumor marker calcitonin. New Journal of Chemistry, 2017, 41(19): 11029–11035
https://doi.org/10.1039/C7NJ01541K
58 M Azimzadeh, M Rahaie, N Nasirizadeh, et al.. An electrochemical nanobiosensor for plasma miRNA-155, based on graphene oxide and gold nanorod, for early detection of breast cancer. Biosensors & Bioelectronics, 2016, 77: 99–106
https://doi.org/10.1016/j.bios.2015.09.020 pmid: 26397420
59 S Park, A Singh, S Kim, et al.. Electroreduction-based electrochemical-enzymatic redox cycling for the detection of cancer antigen 15-3 using graphene oxide-modified indium-tin oxide electrodes. Analytical Chemistry, 2014, 86(3): 1560–1566
https://doi.org/10.1021/ac403912d pmid: 24428396
60 L H Pan, S H Kuo, T Y Lin, et al.. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Biosensors & Bioelectronics, 2017, 89(Pt 1): 598–605
https://doi.org/10.1016/j.bios.2016.01.077 pmid: 26868935
61 C Pothipor, N Wiriyakun, T Putnin, et al.. Highly sensitive biosensors based on graphene–poly (3-aminobenzoic acid) modified electrodes and porous-hollowed-silver–gold nanoparticle labelling for prostate cancer detection. Sensors and Actuators B: Chemical, 2019, 296: 126657
https://doi.org/10.1016/j.snb.2019.126657
62 Z Shekari, H R Zare, A Falahati. Electrochemical sandwich aptasensor for the carcinoembryonic antigen using graphene quantum dots, gold nanoparticles and nitrogen doped graphene modified electrode and exploiting the peroxidase-mimicking activity of a G-quadruplex DNAzyme. Microchimica Acta, 2019, 186(8): 530
https://doi.org/10.1007/s00604-019-3572-9 pmid: 31302781
63 H Imran, P N Manikandan, D Prabhu, et al.. Ultra selective label free electrochemical detection of cancer prognostic p53-antibody at DNA functionalized graphene. Sensing and Bio-Sensing Research, 2019, 23: 100261
https://doi.org/10.1016/j.sbsr.2019.100261
64 B Jin, P Wang, H Mao, et al.. Multi-nanomaterial electrochemical biosensor based on label-free graphene for detecting cancer biomarkers. Biosensors & Bioelectronics, 2014, 55: 464–469
https://doi.org/10.1016/j.bios.2013.12.025 pmid: 24462797
65 T Kilic, A Erdem, Y Erac, et al.. Electrochemical detection of a cancer biomarker mir-21 in cell lysates using graphene modified sensors. Electroanalysis, 2015, 27(2): 317–326
https://doi.org/10.1002/elan.201400518
66 R Wang, C Xue. A sensitive electrochemical immunosensor for alpha-fetoprotein based on covalently incorporating a bio-recognition element onto a graphene modified electrode via diazonium chemistry. Analytical Methods, 2013, 5(19): 5195–5200
https://doi.org/10.1039/c3ay40739j
67 M Yang, A Javadi, H Li, et al.. Ultrasensitive immunosensor for the detection of cancer biomarker based on graphene sheet. Biosensors & Bioelectronics, 2010, 26(2): 560–565
https://doi.org/10.1016/j.bios.2010.07.040 pmid: 20688509
68 D Du, Z Zou, Y Shin, et al.. Sensitive immunosensor for cancer biomarker based on dual signal amplification strategy of graphene sheets and multienzyme functionalized carbon nanospheres. Analytical Chemistry, 2010, 82(7): 2989–2995
https://doi.org/10.1021/ac100036p pmid: 20201502
69 C W Lin, K C Wei, S S Liao, et al.. A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis. Biosensors & Bioelectronics, 2015, 67: 431–437
https://doi.org/10.1016/j.bios.2014.08.080 pmid: 25223552
70 M A Ali, C Singh, S Srivastava, et al.. Graphene oxide-metal nanocomposites for cancer biomarker detection. RSC Advances, 2017, 7(57): 35982–35991
https://doi.org/10.1039/C7RA05491B
71 N Pachauri, K Dave, A Dinda, et al.. Cubic CeO2 implanted reduced graphene oxide-based highly sensitive biosensor for non-invasive oral cancer biomarker detection. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(19): 3000–3012
https://doi.org/10.1039/C8TB00653A pmid: 32254335
72 R Salahandish, A Ghaffarinejad, E Omidinia, et al.. Label-free ultrasensitive detection of breast cancer miRNA-21 biomarker employing electrochemical nano-genosensor based on sandwiched AgNPs in PANI and N-doped graphene. Biosensors & Bioelectronics, 2018, 120: 129–136
https://doi.org/10.1016/j.bios.2018.08.025 pmid: 30172235
73 J Xi, C Xie, Y Zhang, et al.. Pd nanoparticles decorated N-doped graphene quantum dots@N-doped carbon hollow nanospheres with high electrochemical sensing performance in cancer detection. ACS Applied Materials & Interfaces, 2016, 8(34): 22563–22573
https://doi.org/10.1021/acsami.6b05561 pmid: 27502735
74 H Li, J He, S Li, et al.. Electrochemical immunosensor with N-doped graphene-modified electrode for label-free detection of the breast cancer biomarker CA 15-3. Biosensors & Bioelectronics, 2013, 43: 25–29
https://doi.org/10.1016/j.bios.2012.11.037 pmid: 23274193
75 L Yang, S J Zhen, Y F Li, et al.. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker. Nanoscale, 2018, 10(25): 11942–11947
https://doi.org/10.1039/C8NR02820F pmid: 29901677
76 V K Singh, S Kumar, S K Pandey, et al.. Fabrication of sensitive bioelectrode based on atomically thin CVD grown graphene for cancer biomarker detection. Biosensors & Bioelectronics, 2018, 105: 173–181
https://doi.org/10.1016/j.bios.2018.01.014 pmid: 29412942
77 L Miao, L Jiao, J Zhang, et al.. Amperometric sandwich immunoassay for the carcinoembryonic antigen using a glassy carbon electrode modified with iridium nanoparticles, polydopamine and reduced graphene oxide. Microchimica Acta, 2017, 184(1): 169–175
https://doi.org/10.1007/s00604-016-2010-5
78 S C Barman, M F Hossain, H Yoon, et al.. Trimetallic Pd@Au@Pt nanocomposites platform on −COOH terminated reduced graphene oxide for highly sensitive CEA and PSA biomarkers detection. Biosensors & Bioelectronics, 2018, 100: 16–22
https://doi.org/10.1016/j.bios.2017.08.045 pmid: 28850823
79 S Shahrokhian, R Salimian. Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing. Sensors and Actuators B: Chemical, 2018, 266: 160–169
https://doi.org/10.1016/j.snb.2018.03.120
80 M Yang, A Javadi, S Gong. Sensitive electrochemical immunosensor for the detection of cancer biomarker using quantum dot functionalized graphene sheets as labels. Sensors and Actuators B: Chemical, 2011, 155(1): 357–360
https://doi.org/10.1016/j.snb.2010.11.055
81 M Freitas, H P A Nouws, C Delerue-Matos. Electrochemical sensing platforms for HER2-ECD breast cancer biomarker detection. Electroanalysis, 2019, 31(1): 121–128
https://doi.org/10.1002/elan.201800537
82 R G Bai, K Muthoosamy, F N Shipton, et al.. The biogenic synthesis of a reduced graphene oxide–silver (RGO–Ag) nanocomposite and its dual applications as an antibacterial agent and cancer biomarker sensor. RSC Advances, 2016, 6(43): 36576–36587
https://doi.org/10.1039/C6RA02928K
83 P Assari, A A Rafati, A Feizollahi, et al.. An electrochemical immunosensor for the prostate specific antigen based on the use of reduced graphene oxide decorated with gold nanoparticles. Microchimica Acta, 2019, 186(7): 484
https://doi.org/10.1007/s00604-019-3565-8 pmid: 31256262
84 Y Shoja, A Kermanpur, F Karimzadeh. Diagnosis of EGFR exon21 L858R point mutation as lung cancer biomarker by electrochemical DNA biosensor based on reduced graphene oxide/functionalized ordered mesoporous carbon/Ni-oxytetracycline metallopolymer nanoparticles modified pencil graphite electrode. Biosensors & Bioelectronics, 2018, 113: 108–115
https://doi.org/10.1016/j.bios.2018.04.013 pmid: 29753165
85 H Ma, X Zhang, X Li, et al.. Electrochemical immunosensor for detecting typical bladder cancer biomarker based on reduced graphene oxide-tetraethylene pentamine and trimetallic AuPdPt nanoparticles. Talanta, 2015, 143: 77–82
https://doi.org/10.1016/j.talanta.2015.05.029 pmid: 26078131
86 S Rauf, G K Mishra, J Azhar, et al.. Carboxylic group riched graphene oxide based disposable electrochemical immunosensor for cancer biomarker detection. Analytical Biochemistry, 2018, 545: 13–19
https://doi.org/10.1016/j.ab.2018.01.007 pmid: 29339058
87 F Shahzad, S A Zaidi, C M Koo. Highly sensitive electrochemical sensor based on environmentally friendly biomass-derived sulfur-doped graphene for cancer biomarker detection. Sensors and Actuators B: Chemical, 2017, 241: 716–724
https://doi.org/10.1016/j.snb.2016.10.144
88 L Feng, L Wu, J Wang, et al.. Detection of a prognostic indicator in early-stage cancer using functionalized graphene-based peptide sensors. Advanced Materials, 2012, 24(1): 125–131
https://doi.org/10.1002/adma.201103205 pmid: 22139890
89 S Kumar, J G Sharma, S Maji, et al.. Nanostructured zirconia decorated reduced graphene oxide based efficient biosensing platform for non-invasive oral cancer detection. Biosensors & Bioelectronics, 2016, 78: 497–504
https://doi.org/10.1016/j.bios.2015.11.084 pmid: 26657594
90 X Wang, C Wang, K Qu, et al.. Ultrasensitive and selective detection of a prognostic indicator in early-stage cancer using graphene oxide and carbon nanotubes. Advanced Functional Materials, 2010, 20(22): 3967–3971
https://doi.org/10.1002/adfm.201001118
91 F R Zhang, J Y Lu, Q F Yao, et al.. Matter, energy and information network of a graphene-peptide-based fluorescent sensing system for molecular logic computing, detection and imaging of cancer stem cell marker CD133 in cells and tumor tissues. The Analyst, 2019, 144(6): 1881–1891
https://doi.org/10.1039/C8AN02115E pmid: 30785136
92 F Cui, J Ji, J Sun, et al.. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Analytical and Bioanalytical Chemistry, 2019, 411(5): 985–995
https://doi.org/10.1007/s00216-018-1501-0 pmid: 30612176
93 Y Cao, H Dong, Z Yang, et al.. Aptamer-conjugated graphene quantum dots/porphyrin derivative theranostic agent for intracellular cancer-related microRNA detection and fluorescence-guided photothermal/photodynamic synergetic therapy. ACS Applied Materials & Interfaces, 2017, 9(1): 159–166
https://doi.org/10.1021/acsami.6b13150 pmid: 27957830
94 J Song, S Wu, X Yang, et al.. A carboxylated graphene nanodisks/glucose oxidase nanotags and Mn:CdS/TiO2 matrix based dual signal amplification strategy for ultrasensitive photoelectrochemical detection of tumor markers. The Analyst, 2017, 142(24): 4647–4654
https://doi.org/10.1039/C7AN01453H pmid: 29140390
95 M B Hossain, M M Islam, L F Abdulrazak, et al.. Graphene-coated optical fiber SPR biosensor for BRCA1 and BRCA2 breast cancer biomarker detection: a numerical design-based analysis. Photonic Sensors, 2020, 10(1): 67–79
https://doi.org/10.1007/s13320-019-0556-7
96 N F Chiu, T L Lin, C T Kuo. Highly sensitive carboxyl-graphene oxide-based surface plasmon resonance immunosensor for the detection of lung cancer for cytokeratin 19 biomarker in human plasma. Sensors and Actuators B: Chemical, 2018, 265: 264–272
https://doi.org/10.1016/j.snb.2018.03.070
97 I Al-Ogaidi, H Gou, Z P Aguilar, et al.. Detection of the ovarian cancer biomarker CA-125 using chemiluminescence resonance energy transfer to graphene quantum dots. Chemical Communications, 2014, 50(11): 1344–1346
https://doi.org/10.1039/C3CC47701K pmid: 24345782
98 M Pal, R Khan. Graphene oxide layer decorated gold nanoparticles based immunosensor for the detection of prostate cancer risk factor. Analytical Biochemistry, 2017, 536: 51–58
https://doi.org/10.1016/j.ab.2017.08.001
99 H Wang, H Chen, Z Huang, et al.. DNase I enzyme-aided fluorescence signal amplification based on graphene oxide–DNA aptamer interactions for colorectal cancer exosome detection. Talanta, 2018, 184: 219–226
https://doi.org/10.1016/j.talanta.2018.02.083 pmid: 29674035
100 T H Kim, H J Yoon, S Fouladdel, et al.. Characterizing circulating tumor cells isolated from metastatic breast cancer patients using graphene oxide based microfluidic assay. Advanced Biosystems, 2019, 3(2): 1800278
https://doi.org/10.1002/adbi.201800278 pmid: 32627379
101 Z Yang, L Qin, D Yang, et al.. A graphene oxide fluorescent sensing platform for sensitive and specific detecting biomarker of radiation-resistant nasopharyngeal carcinoma. Bioorganic & Medicinal Chemistry Letters, 2019, 29(16): 2383–2386
https://doi.org/10.1016/j.bmcl.2019.06.005 pmid: 31196713
102 P Vilela, A El-Sagheer, T M Millar, et al.. Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’s disease and prostate cancer. ACS Sensors, 2017, 2(1): 52–56
https://doi.org/10.1021/acssensors.6b00651 pmid: 28722438
103 B P Viraka Nellore, R Kanchanapally, A Pramanik, et al.. Aptamer-conjugated graphene oxide membranes for highly efficient capture and accurate identification of multiple types of circulating tumor cells. Bioconjugate Chemistry, 2015, 26(2): 235–242
https://doi.org/10.1021/bc500503e pmid: 25565372
104 L He, Q Pagneux, I Larroulet, et al.. Label-free femtomolar cancer biomarker detection in human serum using graphene-coated surface plasmon resonance chips. Biosensors & Bioelectronics, 2017, 89(Pt 1): 606–611
https://doi.org/10.1016/j.bios.2016.01.076 pmid: 26852830
105 Z Tehrani, G Burwell, M A M Azmi, et al.Generic epitaxial graphene biosensors for ultrasensitive detection of cancer risk biomarker. 2D Materials, 2014, 1(2): 025004
https://doi.org/10.1088/2053-1583/1/2/025004
106 X Wang, C Wang, K Qu, et al.. Ultrasensitive and selective detection of a prognostic indicator in early stage cancer using graphene oxide and carbon nanotubes. Advanced Functional Materials, 2010, 20(22): 3967–3971
https://doi.org/10.1002/adfm.201001118
107 S M Sharker, E B Kang, C I Shin, et al.. Near-infrared-active and pH-responsive fluorescent polymer-integrated hybrid graphene oxide nanoparticles for the detection and treatment of cancer. Journal of Applied Polymer Science, 2016, 133(32): 43791
https://doi.org/10.1002/app.43791
108 B Wang, Y Song, L Ge, et al.. Antibody-modified reduced graphene oxide film for circulating tumor cell detection in early-stage prostate cancer patients. RSC Advances, 2019, 9(17): 9379–9385
https://doi.org/10.1039/C8RA08682F
109 Y Cheng, R Yuan, Y Chai, et al.. Highly sensitive luminol electrochemiluminescence immunosensor based on ZnO nanoparticles and glucose oxidase decorated graphene for cancer biomarker detection. Analytica Chimica Acta, 2012, 745: 137–142
https://doi.org/10.1016/j.aca.2012.08.010 pmid: 22938618
110 S Xu, Y Liu, T Wang, et al.. Positive potential operation of a cathodic electrogenerated chemiluminescence immunosensor based on luminol and graphene for cancer biomarker detection. Analytical Chemistry, 2011, 83(10): 3817–3823
https://doi.org/10.1021/ac200237j pmid: 21513282
111 R Heidari, J Rashidiani, M Abkar, et al.. CdS nanocrystals/graphene oxide-AuNPs based electrochemiluminescence immunosensor in sensitive quantification of a cancer biomarker: p53. Biosensors & Bioelectronics, 2019, 126: 7–14
https://doi.org/10.1016/j.bios.2018.10.031 pmid: 30388553
112 F Liu, Y Zhang, S Ge, et al.. Magnetic graphene nanosheets based electrochemiluminescence immunoassay of cancer biomarker using CdTe quantum dots coated silica nanospheres as labels. Talanta, 2012, 99: 512–519
https://doi.org/10.1016/j.talanta.2012.06.021 pmid: 22967587
113 J Rashidiani, M Kamali, H Sedighian, et al.. Ultrahigh sensitive enhanced-electrochemiluminescence detection of cancer biomarkers using silica NPs/graphene oxide: A comparative study. Biosensors & Bioelectronics, 2018, 102: 226–233
https://doi.org/10.1016/j.bios.2017.11.011 pmid: 29149688
114 M Cui, R Yu, X Wang, et al.. Novel graphene/Au-CdS:Eu composite-based electrochemiluminescence immunosensor for cancer biomarker detection by coupling resonance energy transfer and enzyme catalytic reaction. Journal of Electroanalytical Chemistry, 2016, 781: 410–417
https://doi.org/10.1016/j.jelechem.2016.06.045
115 Q He, S Wu, Z Yin, et al.. Graphene-based electronic sensors. Chemical Science, 2012, 3(6): 1764–1772
https://doi.org/10.1039/c2sc20205k
116 Z Hao, Y Pan, W Shao, et al.. Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva. Biosensors & Bioelectronics, 2019, 134: 16–23
https://doi.org/10.1016/j.bios.2019.03.053 pmid: 30952012
117 S Myung, A Solanki, C Kim, et al.. Graphene-encapsulated nanoparticle-based biosensor for the selective detection of cancer biomarkers. Advanced Materials, 2011, 23(19): 2221–2225
https://doi.org/10.1002/adma.201100014 pmid: 21469221
118 Rajesh, Z Gao, R Vishnubhotla, et al.. Genetically engineered antibody functionalized platinum nanoparticles modified CVD-graphene nanohybrid transistor for the detection of breast cancer biomarker, HER3. Advanced Materials Interfaces, 2016, 3(17): 1600124
https://doi.org/10.1002/admi.201600124
119 L Zhou, K Wang, H Sun, et al.. Novel graphene biosensor based on the functionalization of multifunctional nano-bovine serum albumin for the highly sensitive detection of cancer biomarkers. Nano-Micro Letters, 2019, 11(1): 20
https://doi.org/10.1007/s40820-019-0250-8
120 Z Hao, Y Pan, C Huang, et al.. Sensitive detection of lung cancer biomarkers using an aptameric graphene-based nanosensor with enhanced stability. Biomedical Microdevices, 2019, 21(3): 65
https://doi.org/10.1007/s10544-019-0409-6 pmid: 31273548
121 S Mansouri Majd, A Salimi. Ultrasensitive flexible FET-type aptasensor for CA 125 cancer marker detection based on carboxylated multiwalled carbon nanotubes immobilized onto reduced graphene oxide film. Analytica Chimica Acta, 2018, 1000: 273–282
https://doi.org/10.1016/j.aca.2017.11.008 pmid: 29289320
122 S Nag, L Duarte, E Bertrand, et al.. Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2014, 2(38): 6571–6579
https://doi.org/10.1039/C4TB01041H pmid: 32261818
123 R Koncki. Recent developments in potentiometric biosensors for biomedical analysis. Analytica Chimica Acta, 2007, 599(1): 7–15
https://doi.org/10.1016/j.aca.2007.08.003 pmid: 17765058
124 Z Hong, G Chen, S Yu, et al.. A potentiometric aptasensor for carcinoembryonic antigen (CEA) on graphene oxide nanosheets using catalytic recycling of DNase I with signal amplification. Analytical Methods, 2018, 10(45): 5364–5371
https://doi.org/10.1039/C8AY02113A
125 F Li, S Hu, R Zhang, et al.. Porous graphene oxide enhanced aptamer specific circulating-tumor-cell sensing interface on light addressable potentiometric sensor: clinical application and simulation. ACS Applied Materials & Interfaces, 2019, 11(9): 8704–8709
https://doi.org/10.1021/acsami.8b21101 pmid: 30762335
126 L A Truta, N S Ferreira, M G F Sales. Graphene-based biomimetic materials targeting urine metabolite as potential cancer biomarker: application over different conductive materials for potentiometric transduction. Electrochimica Acta, 2014, 150: 99–107
https://doi.org/10.1016/j.electacta.2014.10.136 pmid: 26456975
127 U K Sur. Surface-enhanced Raman spectroscopy. Resonance, 2010, 15(2): 154–164
https://doi.org/10.1007/s12045-010-0016-6
128 S Kumar, S Kumar, S Srivastava, et al.. Reduced graphene oxide modified smart conducting paper for cancer biosensor. Biosensors & Bioelectronics, 2015, 73: 114–122
https://doi.org/10.1016/j.bios.2015.05.040 pmid: 26057732
129 M Papi, V Palmieri, L Digiacomo, et al.. Converting the personalized biomolecular corona of graphene oxide nanoflakes into a high-throughput diagnostic test for early cancer detection. Nanoscale, 2019, 11(32): 15339–15346
https://doi.org/10.1039/C9NR01413F pmid: 31386742
130 X F Zhang, Z W Zhang, Y L He, et al.. Sniffing lung cancer related biomarkers using an oxidized graphene SAW sensor. Frontiers of Physics, 2016, 11(2): 116801
https://doi.org/10.1007/s11467-015-0519-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed