1. Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India 2. Symbiosis Institute of Health Sciences (SIHS), Symbiosis International (Deemed University), Pune, Maharashtra, India 3. Biological E Limited, Shameerpet, Hyderabad, India
5 nm (tubular), 30 nm (prismatic or irregular in shape), 3 nm (tubular), 2–22 nm (rod)
intracellular & extracellular
[141]
Bacteriophage
Au
20–100 nm (spheres, hexagons, triangles, rhomboids and rectangular)
extracellular
[142]
Cowpea mosaic virus (CPMV)
Co, Ni, Fe, Pt, CoPt and NiFe
≤35 nm (shape was not given)
intra cellular & extracellular
[143]
Tab.5
1
D S Goodsell. Bionanotechnology: Lessons from Nature. John Wiley & Sons, Inc., 2004
2
N Taniguchi. On the basic concept of nano-technology. Proceedings of the International Conference on Production Engineering, Tokyo, Japan, 1974, 18–23
3
M C Daniel, D Astruc. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293–346 https://doi.org/10.1021/cr030698+
pmid: 14719978
4
M Arakha, M Saleem, B C Mallick, et al.. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports, 2015, 5(1): 9578 https://doi.org/10.1038/srep09578
pmid: 25873247
5
N Behera, M Arakha, M Priyadarshinee, et al.. Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Advances, 2019, 9(43): 24888–24894 https://doi.org/10.1039/C9RA02082A
6
M Arakha, J Roy, P S Nayak, et al.. Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death. Free Radical Biology & Medicine, 2017, 110: 42–53 https://doi.org/10.1016/j.freeradbiomed.2017.05.015
pmid: 28528796
7
M Arakha, S Pal, D Samantarrai, et al.. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle–bacteria interface. Scientific Reports, 2015, 5(1): 14813 https://doi.org/10.1038/srep14813
pmid: 26437582
8
S Dubchak, A Ogar, J W Mietelski, et al.. Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Spanish Journal of Agricultural Research, 2010, 8(S1): S103–S108 https://doi.org/10.5424/sjar/201008S1-1228
9
S Griffin, M I Masood, M J Nasim, et al.. Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 2018, 7(1): 3 https://doi.org/10.3390/antiox7010003
pmid: 29286304
10
F Mafuné, J y Kohno, Y Takeda, et al.. Dissociation and aggregation of gold nanoparticles under laser irradiation. The Journal of Physical Chemistry B, 2001, 105(38): 9050–9056 https://doi.org/10.1021/jp0111620
11
T Y Chen, S F Chen, H S Sheu, et al.. Reactivity of laser-prepared copper nanoparticles: Oxidation of thiols to disulfides. The Journal of Physical Chemistry B, 2002, 106(38): 9717–9722 https://doi.org/10.1021/jp0205822
12
B Ershov, A Henglein. Optical spectrum and some chemical properties of colloidal thallium in aqueous solution. The Journal of Physical Chemistry, 1993, 97(13): 3434–3436 https://doi.org/10.1021/j100115a056
13
A Henglein. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions. Langmuir, 1999, 15(20): 6738–6744 https://doi.org/10.1021/la9901579
14
A Henglein. Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2. The Journal of Physical Chemistry B, 2000, 104(6): 1206–1211 https://doi.org/10.1021/jp992950g
15
F Grieser, M Ashokkumar. Sonochemical synthesis of inorganic and organic colloids. In: F Caruso, ed. Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles. John Wiley & Sons, Inc., 2004, 120–149
16
K Wegner, B Walker, S Tsantilis, et al.. Design of metal nanoparticle synthesis by vapor flow condensation. Chemical Engineering Science, 2002, 57(10): 1753–1762 https://doi.org/10.1016/S0009-2509(02)00064-7
17
S Mishra, D Kshatri, A Khare, et al.. SrS:Ce3+ thin films for electroluminescence device applications deposited by electron-beam evaporation deposition method. Materials Letters, 2016, 183: 191–196 https://doi.org/10.1016/j.matlet.2016.07.097
18
S Mishra, D Kshatri, A Khare, et al.. Fabrication, characterization and electroluminescence studies of SrS:Ce3+ ACTFEL device. Materials Letters, 2017, 198: 101–105 https://doi.org/10.1016/j.matlet.2017.04.013
M L Rodríguez-Sánchez, M J Rodríguez, M C Blanco, et al.. Kinetics and mechanism of the formation of Ag nanoparticles by electrochemical techniques: A plasmon and cluster time-resolved spectroscopic study. The Journal of Physical Chemistry B, 2005, 109(3): 1183–1191 https://doi.org/10.1021/jp046056n
pmid: 16851079
21
W Chen, W Cai, L Zhang, et al.. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. Journal of Colloid and Interface Science, 2001, 238(2): 291–295 https://doi.org/10.1006/jcis.2001.7525
pmid: 11374924
22
S Eustis, H Y Hsu, M A El-Sayed. Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism. The Journal of Physical Chemistry B, 2005, 109(11): 4811–4815 https://doi.org/10.1021/jp0441588
pmid: 16863133
23
L Rodriguez-Sanchez, M Blanco, M Lopez-Quintela. Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B, 2000, 104(41): 9683–9688 https://doi.org/10.1021/jp001761r
24
M Starowicz, B Stypuła, J Banaś. Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 2006, 8(2): 227–230 https://doi.org/10.1016/j.elecom.2005.11.018
25
A Frattini, N Pellegri, D Nicastro, et al.. Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Materials Chemistry and Physics, 2005, 94(1): 148–152 https://doi.org/10.1016/j.matchemphys.2005.04.023
26
J Ai, E Biazar, M Jafarpour, et al.. Nanotoxicology and nanoparticle safety in biomedical designs. International Journal of Nanomedicine, 2011, 6: 1117–1127
pmid: 21698080
27
P S Nayak, M Arakha, A Kumar, et al.. An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Advances, 2016, 6(10): 8232–8242 https://doi.org/10.1039/C5RA21281B
28
S Panda, K K Yadav, P S Nayak, et al.. Screening of metal-resistant coal mine bacteria for biofabrication of elemental silver nanoparticle. Bulletin of Materials Science, 2016, 39(2): 397–404 https://doi.org/10.1007/s12034-016-1181-3
29
P S Anton, R Silberglitt, J Schneider. The Global Technology Revolution: Bio/Nano/Materials Trends and Their Synergies with Information Technology by 2015. RAND, 2001
30
A H Arnall. Future Technologies, Today’s Choices — Nanotechnology, Artificial Intelligence and Robotics: A Technical, Political and Institutional Map of Emerging Technologies. London: Greenpeace Environmental Trust, 2003
R P Feynman. There’s plenty of room at the bottom. California Institute of Technology, Engineering and Science Magazine, 1960, 23(5): 22–36
35
K E Drexler. Engines of Creation: The Coming Era of Nanotechnology. Anchor Books, 1987
36
U Gangopadhyay, S Das, S Jana, et al.. State of art of nanotechnology. International Journal of Engineering Research and Development, 2012, 3(6): 95–112
37
D L Fedlheim, C A Foss. Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, 2001
38
S Sepeur. Nanotechnology: Technical Basics and Applications. Germany: Vincentz Network GmbH & Co. KG, 2008
39
A R Shahverdi, M Shakibaie, P Nazari. Basic and practical procedures for microbial synthesis of nanoparticles. In: Rai M, Duran N, eds. Metal Nanoparticles in Microbiology. Springer Berlin Heidelberg, 2011, 177
40
G Singhal, R Bhavesh, K Kasariya, et al.. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 2011, 13(7): 2981–2988 https://doi.org/10.1007/s11051-010-0193-y
41
L Marchiol. Synthesis of metal nanoparticles in living plants. Italian Journal of Agronomy, 2012, 7(3): e37–e37 https://doi.org/10.4081/ija.2012.e37
42
T Satyanarayana, S S Reddy. A review on chemical and physical synthesis methods of nanomaterials. International Journal for Research in Applied Science and Engineering Technology, 2018, 6(1): 2885–2889 https://doi.org/10.22214/ijraset.2018.1396
43
S Renganathan, G P D Geoprincy, P Kalainila. Green synthesis of ecofriendly nanoparticles and their medical applications. In: Sivasubramanian V, ed. Environmental Sustainability Using Green Technologies. CRC Press, 2016
44
P Vishnukumar, S Sankaranarayanan, M Hariram, et al.. Carbon dots from renewable resources: A review on precursor choices and potential applications. Green Nanomaterials, 2020, 159–208 https://doi.org/10.1007/978-981-15-3560-4_7
45
M Kim, S Osone, T Kim, et al.. Synthesis of nanoparticles by laser ablation: A review. Kona Powder and Particle Journal, 2017, (34): 80–90 https://doi.org/10.14356/kona.2017009
46
A A Yaqoob, H Ahmad, T Parveen, et al.. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Frontiers in Chemistry, 2020, 8: 341 https://doi.org/10.3389/fchem.2020.00341
pmid: 32509720
47
P S Nayak, S Pradhan, M Arakha, et al.. Silver nanoparticles fabricated using medicinal plant extracts show enhanced antimicrobial and selective cytotoxic propensities. IET Nanobiotechnology, 2019, 13(2): 193–201 https://doi.org/10.1049/iet-nbt.2018.5025
pmid: 31051451
48
M Sharma, P S Nayak, S Asthana, et al.. Biofabrication of silver nanoparticles using bacteria from mangrove swamp. IET Nanobiotechnology, 2018, 12(5): 626–632 https://doi.org/10.1049/iet-nbt.2017.0205
49
T M Abdelghany, A M H Al-Rajhi, M A Al Abboud, et al.. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. Bionanoscience, 2018, 8(1): 5–16 https://doi.org/10.1007/s12668-017-0413-3
50
J Singh, T Dutta, K H Kim, et al.. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 2018, 16(1): 84 (24 pages) https://doi.org/10.1186/s12951-018-0408-4
pmid: 30373622
51
A Albanese, P S Tang, W C Chan. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16 https://doi.org/10.1146/annurev-bioeng-071811-150124
pmid: 22524388
L Sintubin, W Verstraete, N Boon. Biologically produced nanosilver: Current state and future perspectives. Biotechnology and Bioengineering, 2012, 109(10): 2422–2436 https://doi.org/10.1002/bit.24570
pmid: 22674445
54
S Mukherjee, V Sushma, S Patra, et al.. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45): 455103 https://doi.org/10.1088/0957-4484/23/45/455103
pmid: 23064012
55
S Baker, D Rakshith, K Kumar, et al.. Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts, 2013, 3(3): 111–117
pmid: 24163802
56
Z Sadowski, I H Maliszewska, B Grochowalska, et al.. Synthesis of silver nanoparticles using microorganisms. Materials Science: Poland, 2008, 26(2): 419–424
57
A Ahmad, S Senapati, M I Khan, et al.. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 2003, 19(8): 3550–3553 https://doi.org/10.1021/la026772l
58
P Khandel, S K Shahi. Microbes mediated synthesis of metal nanoparticles: Current status and future prospects. International Journal of Nanomaterials and Biostructures, 2016, 6(1): 1–24
59
N Jain, A Bhargava, S Majumdar, et al.. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 2011, 3(2): 635–641 https://doi.org/10.1039/C0NR00656D
pmid: 21088776
60
D Mandal, M E Bolander, D Mukhopadhyay, et al.. The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 2006, 69(5): 485–492 https://doi.org/10.1007/s00253-005-0179-3
pmid: 16317546
61
K N Thakkar, S S Mhatre, R Y Parikh. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Bio-logy, and Medicine, 2010, 6(2): 257–262 https://doi.org/10.1016/j.nano.2009.07.002
pmid: 19616126
A Ayesha. Bacterial synthesis and applications of nanoparticles. Nano Science & Nano Technology: An Indian Journal, 2017, 11(2): 119
64
M A Faramarzi, A Sadighi. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Advances in Colloid and Interface Science, 2013, 189–190: 1–20 https://doi.org/10.1016/j.cis.2012.12.001
pmid: 23332127
65
S Iravani. Bacteria in nanoparticle synthesis: Current status and future prospects. International Scholarly Research Notices, 2014, 2014: 359316 (18 pages) https://doi.org/10.1155/2014/359316
pmid: 27355054
66
M Bandeira, M Giovanela, M Roesch-Ely, et al.. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Che-mistry and Pharmacy, 2020, 15: 100223 https://doi.org/10.1016/j.scp.2020.100223
67
T Klaus-Joerger, R Joerger, E Olsson, et al.. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 2001, 19(1): 15–20 https://doi.org/10.1016/S0167-7799(00)01514-6
pmid: 11146098
S He, Z Guo, Y Zhang, et al.. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters, 2007, 61(18): 3984–3987 https://doi.org/10.1016/j.matlet.2007.01.018
70
M F Lengke, M E Fleet, G Southam. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 2007, 23(5): 2694–2699 https://doi.org/10.1021/la0613124
pmid: 17309217
71
A S Jubran, O M Al-Zamely, M H Al-Ammar. A study of iron oxide nanoparticles synthesis by using bacteria. International Journal of Pharmaceutical Quality Assurance, 2020, 11(1): 1–8
72
F Ameen, S AlYahya, M Govarthanan, et al.. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. Journal of Molecular Structure, 2020, 1202: 127233 https://doi.org/10.1016/j.molstruc.2019.127233
73
S Pawar, A Bhosale, S Gaikwad, et al.. Extracellular biosynthesis of silver nanoparticles using bacterial isolate from saline soil. Journal of Nanoscience and Technology, 2020, 869–873
74
C De Silva, A A M Noor, M M Abd Karim, et al.. The green synthesis and characterisation of silver nanoparticles from Serratia spp. Revista Mexicana de Ingeniería Química, 2020, 19(3): 1327–1339 https://doi.org/10.24275/rmiq/Bio1059
75
S Bharathi, S Kumaran, G Suresh, et al.. Extracellular synthesis of nanoselenium from fresh water bacteria Bacillus sp., and its validation of antibacterial and cytotoxic potential. Biocatalysis and Agricultural Biotechnology, 2020, 27: 101655 https://doi.org/10.1016/j.bcab.2020.101655
76
A V Tugarova, P V Mamchenkova, V A Khanadeev, et al.. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New Biotechnology, 2020, 58: 17–24 https://doi.org/10.1016/j.nbt.2020.02.003
pmid: 32184193
77
S Busi, J Rajkumari, S Pattnaik, et al.. Extracellular synthesis of zinc oxide nanoparticles using Acinetobacter schindleri SIZ7 and its antimicrobial property against foodborne pathogens. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 5(5): 407–411 https://doi.org/10.15414/jmbfs.2016.5.5.407-411
78
Y Liu, H Perumalsamy, C H Kang, et al.. Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages. Artificial Cells, Nanomedicine, and Biotechnology, 2020, 48(1): 777–788 https://doi.org/10.1080/21691401.2020.1748639
pmid: 32308043
79
N M Sidkey, R A Arafa, Y M Moustafa, et al.. Biosynthesis of mg and mn intracellular nanoparticles via extremo-metallotolerant Pseudomonas stutzeri, B4 Mg/W and Fusarium nygamai, F4 Mn/S. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 9(4): 1181–1187
80
M Ashengroph, A Khaledi, E M Bolbanabad. Extracellular biosynthesis of cadmium sulphide quantum dot using cell-free extract of Pseudomonas chlororaphis CHR05 and its antibacterial activity. Process Biochemistry, 2020, 89: 63–70 https://doi.org/10.1016/j.procbio.2019.10.028
81
S M Abdel-Aziz, R Prasad, A A Hamed, et al.. Fungal nanoparticles: A novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, eds. Fungal Nanobionics: Principles and Applications. Springer, 2018, 61–87
82
Y L Chen, H Y Tuan, C W Tien, et al.. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnology Progress, 2009, 25(5): 1260–1266 https://doi.org/10.1002/btpr.199
pmid: 19630084
83
P Mohanpuria, N K Rana, S K Yadav. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 2008, 10(3): 507–517 https://doi.org/10.1007/s11051-007-9275-x
84
W Qin, C Y Wang, Y X Ma, et al.. Microbe-mediated extracellular and intracellular mineralization: Environmental, industrial, and biotechnological applications. Advanced Materials, 2020, 32(22): 1907833 https://doi.org/10.1002/adma.201907833
pmid: 32270552
85
E R El-Sayed, H K Abdelhakim, Z Zakaria. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Materials Science and Engineering C, 2020, 107: 110318 https://doi.org/10.1016/j.msec.2019.110318
pmid: 31761250
86
M A Abu-Tahon, M Ghareib, W E Abdallah. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochemistry, 2020, 95: 1–11 https://doi.org/10.1016/j.procbio.2020.04.015
87
B Priyanka. Biosynthesis of silver nanoparticles from Aspergillus flavus. Journal of Pharmaceutical Sciences and Research, 2020, 12(4): 583–586
88
R M Kumari, V Kumar, M Kumar, et al.. Extracellular biosynthesis of silver nanoparticles using Aspergillus terreus: Evaluation of its antibacterial and anticancer potential. Materials Today: Proceedings, 2020 https://doi.org/10.1016/j.matpr.2020.04.494
89
C Rodríguez-Serrano, J Guzmán-Moreno, C Ángeles-Chávez, et al.. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS One, 2020, 15(3): e0230275 https://doi.org/10.1371/journal.pone.0230275
pmid: 32163495
90
N Feroze, B Arshad, M Younas, et al.. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research and Technique, 2020, 83(1): 72–80 https://doi.org/10.1002/jemt.23390
pmid: 31617656
91
S Tyagi, P K Tyagi, D Gola, et al.. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: Characterization and antibacterial potential. SN Applied Sciences, 2019, 1(12): 1545 https://doi.org/10.1007/s42452-019-1593-y
92
S Noor, Z Shah, A Javed, et al.. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. Journal of Microbiological Methods, 2020, 174: 105966 https://doi.org/10.1016/j.mimet.2020.105966
pmid: 32474053
93
S Chatterjee, S Mahanty, P Das, et al.. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 2020, 385: 123790 https://doi.org/10.1016/j.cej.2019.123790
94
N Thajuddin, G Subramanian. Survey of cyanobacterial flora of the southern east coast of India. Botanica Marina, 1992, 35(4): 305–314 https://doi.org/10.1515/botm.1992.35.4.305
95
N Thajuddin, G Subramanian. Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 2005, 89(1): 47–57
96
F L Oscar, D Bakkiyaraj, C Nithya, et al.. Deciphering the diversity of microalgal bloom in wastewater — An attempt to construct potential consortia for bioremediation. Journal of Current Perspectives in Applied Microbiology, 2014, 2278: 92
97
R E Lee. Phycology. 4th ed. Cambridge: Cambridge University Press, 2008
98
M N Johansen, ed. Microalgae: Biotechnology, Microbiology and Energy. New York: Nova Science Publishers, Inc., 2012
99
M A Borowitzka. High-value products from microalgae — their development and commercialisation. Journal of Applied Phyco-logy, 2013, 25(3): 743–756 https://doi.org/10.1007/s10811-013-9983-9
100
S F Sing, A Isdepsky, M Borowitzka, et al.. Production of biofuels from microalgae. Mitigation and Adaptation Strategies for Global Change, 2013, 18(1): 47–72 https://doi.org/10.1007/s11027-011-9294-x
101
A Sharma, S Sharma, K Sharma, et al.. Algae as crucial organisms in advancing nanotechnology: A systematic review. Journal of Applied Phycology, 2016, 28(3): 1759–1774 https://doi.org/10.1007/s10811-015-0715-1
S A Davis, H M Patel, E L Mayes, et al.. Brittle bacteria: A biomimetic approach to the formation of fibrous composite materials. Chemistry of Materials, 1998, 10(9): 2516–2524 https://doi.org/10.1021/cm9802853
104
S A Dahoumane, C Djediat, C Yéprémian, et al.. Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnology and Bioengineering, 2012, 109(1): 284–288 https://doi.org/10.1002/bit.23276
pmid: 21809325
105
S A Dahoumane, K Wijesekera, C D Filipe, et al.. Stoichiometrically controlled production of bimetallic gold–silver alloy colloids using micro-alga cultures. Journal of Colloid and Interface Science, 2014, 416: 67–72 https://doi.org/10.1016/j.jcis.2013.10.048
pmid: 24370403
106
F LewisOscar, S Vismaya, M Arunkumar, et al.. Algal nanoparticles: Synthesis and biotechnological potentials. Algae-Organisms for Imminent Biotechnology, 2016, 7: 157–182
107
P D Shankar, S Shobana, I Karuppusamy, et al.. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology, 2016, 95: 28–44 https://doi.org/10.1016/j.enzmictec.2016.10.015
pmid: 27866624
108
B Y Öztürk, B Y Gürsu, İ Dağ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 2020, 89: 208–219 https://doi.org/10.1016/j.procbio.2019.10.027
109
Y Dağlıoğlu, B Y Öztürk. A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): Different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 2019, 30(3): 611–621 https://doi.org/10.1007/s12210-019-00822-8
110
K Govindaraju, V Kiruthiga, V G Kumar, et al.. Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. Journal of Nanoscience and Nanotechnology, 2009, 9(9): 5497–5501 https://doi.org/10.1166/jnn.2009.1199
pmid: 19928252
111
G Singaravelu, J S Arockiamary, V G Kumar, et al.. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces, 2007, 57(1): 97–101 https://doi.org/10.1016/j.colsurfb.2007.01.010
pmid: 17350236
112
S Senapati, A Syed, S Moeez, et al.. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Materials Letters, 2012, 79: 116–118 https://doi.org/10.1016/j.matlet.2012.04.009
113
P Rajasulochana, R Dhamotharan, P Murugakoothan, et al.. Biosynthesis and characterization of gold nanoparticles using the alga Kappaphycus alvarezii. International Journal of Nanoscience, 2010, 9(5): 511–516 https://doi.org/10.1142/S0219581X10007149
114
T Kalabegishvili, E Kirkesali, A Rcheulishvili. Synthesis of gold nanoparticles by blue-green algae Spirulina platensis. Journal of Applied Microbiology and Biotechnology, 2012
115
I M Chung, I Park, K Seung-Hyun, et al.. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Research Letters, 2016, 11(1): 40 https://doi.org/10.1186/s11671-016-1257-4
pmid: 26821160
116
R I Priyadharshini, G Prasannaraj, N Geetha, et al.. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Applied Biochemistry and Biotechnology, 2014, 174(8): 2777–2790 https://doi.org/10.1007/s12010-014-1225-3
pmid: 25380639
117
Y Abboud, T Saffaj, A Chagraoui, et al.. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied Nanoscience, 2014, 4(5): 571–576 https://doi.org/10.1007/s13204-013-0233-x
C N Frey. History and development of the modern yeast industry. Industrial & Engineering Chemistry, 1930, 22(11): 1154–1162 https://doi.org/10.1021/ie50251a012
120
G M Walker. Yeast Physiology and Biotechnology. John Wiley & Sons, Inc., 1998
D Kumar, L Karthik, G Kumar, et al.. Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline, 2011, 3: 1100–1111
123
R Varshney, S Bhadauria, M S Gaur. A review: Biological synthesis of silver and copper nanoparticles. Nano Biomedicine and Engineering, 2012, 4(2): 99–106 https://doi.org/10.5101/nbe.v4i2.p99-106
124
M R Salvadori, R A Ando, D Muraca, et al.. Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Advances, 2016, 6(65): 60683–60692 https://doi.org/10.1039/C6RA07274G
125
M R Salvadori, R A Ando, C A O Nascimento, et al.. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(11): 1112–1120 https://doi.org/10.1080/10934529.2017.1340754
pmid: 28763240
126
I Olobayotan, B Akin-Osanaiye. Biosynthesis of silver nanoparticles using Baker’s yeast, Saccharomyces cerevisiae and its antibacterial activities. Access Microbiology, 2019, 1(1A): 526 https://doi.org/10.1099/acmi.ac2019.po0316
127
M Kowshik, S Ashtaputre, S Kharrazi, et al.. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 2003, 14(1): 95–100 https://doi.org/10.1088/0957-4484/14/1/321
128
S Lian, C S Diko, Y Yan, et al.. Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech, 2019, 9(6): 221 https://doi.org/10.1007/s13205-019-1748-y
M Kowshik, N Deshmukh, W Vogel, et al.. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 2002, 78(5): 583–588 https://doi.org/10.1002/bit.10233
pmid: 12115128
131
C Dameron, R Reese, R Mehra, et al.. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 1989, 338(6216): 596–597 https://doi.org/10.1038/338596a0
132
M R Salvadori, R A Ando, C A Oller do Nascimento, et al.. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One, 2014, 9(1): e87968 https://doi.org/10.1371/journal.pone.0087968
pmid: 24489975
133
D K Golhani, A Khare, G K Burra, et al.. Microbes induced biofabrication of nanoparticles: A review. Inorganic and Nano-Metal Chemistry, 2020, 50(10): 983–999 https://doi.org/10.1080/24701556.2020.1731539
134
H Lodish, A Berk, S L Zipursky, et al.. Molecular mechanisms of eukaryotic transcriptional control. In: Lodish H, ed. Molecular Cell Biology. 4th ed. New York: WH Freeman Co., 2000
135
L A Lee, Z Niu, Q Wang. Viruses and virus-like protein assemblies — Chemically programmable nanoscale building blocks. Nano Research, 2009, 2(5): 349–364 https://doi.org/10.1007/s12274-009-9033-8
136
S Brumfield, D Willits, L Tang, et al.. Heterologous expression of the modified coat protein of cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. The Journal of General Virology, 2004, 85(4): 1049–1053 https://doi.org/10.1099/vir.0.19688-0
pmid: 15039547
137
M T Klem, D Willits, M Young, et al.. 2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. Journal of the American Chemical Society, 2003, 125(36): 10806–10807 https://doi.org/10.1021/ja0363718
pmid: 12952458
138
P Singh, M J Gonzalez, M Manchester. Viruses and their uses in nanotechnology. Drug Development Research, 2006, 67(1): 23–41 https://doi.org/10.1002/ddr.20064
139
J K Pokorski, N F Steinmetz. The art of engineering viral nanoparticles. Molecular Pharmaceutics, 2011, 8(1): 29–43 https://doi.org/10.1021/mp100225y
pmid: 21047140
140
C Mao, C E Flynn, A Hayhurst, et al.. Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 6946–6951 https://doi.org/10.1073/pnas.0832310100
pmid: 12777631
S S Ahiwale, A V Bankar, S Tagunde, et al.. A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian Journal of Microbiology, 2017, 57(2): 188–194 https://doi.org/10.1007/s12088-017-0640-x
pmid: 28611496
143
A A Aljabali, J E Barclay, G P Lomonossoff, et al.. Virus templated metallic nanoparticles. Nanoscale, 2010, 2(12): 2596–2600 https://doi.org/10.1039/c0nr00525h
pmid: 20877898
144
A Bansal, H Yang, C Li, et al.. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Materials, 2005, 4(9): 693–698 https://doi.org/10.1038/nmat1447
pmid: 16086021
145
A Gade, P Bonde, A Ingle, et al.. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2008, 2(3): 243–247 https://doi.org/10.1166/jbmb.2008.401
146
M Rai, A Ingle. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 2012, 94(2): 287–293 https://doi.org/10.1007/s00253-012-3969-4
pmid: 22388570
147
D P Cunningham, L L Lundie. Precipitation of cadmium by Clostridium thermoaceticum. Applied and Environmental Microbiology, 1993, 59(1): 7–14 https://doi.org/10.1128/AEM.59.1.7-14.1993
pmid: 8439169
148
M Gajbhiye, J Kesharwani, A Ingle, et al.. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5(4): 382–386 https://doi.org/10.1016/j.nano.2009.06.005
pmid: 19616127
149
K Punjabi, P Choudhary, L Samant, et al.. Biosynthesis of nanoparticles: A review. International Journal of Pharmaceutical Sciences Review and Research, 2015, 30(1): 219–226