Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2021, Vol. 15 Issue (2): 177-191   https://doi.org/10.1007/s11706-021-0546-8
  本期目录
Microbial cells as biological factory for nanoparticle synthesis
Bhabani Shankar DAS1, Ankita DAS2, Abhisek MISHRA3, Manoranjan ARAKHA1()
1. Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha ‘O’ Anusandhan (Deemed to be University), Bhubaneswar 751003, Odisha, India
2. Symbiosis Institute of Health Sciences (SIHS), Symbiosis International (Deemed University), Pune, Maharashtra, India
3. Biological E Limited, Shameerpet, Hyderabad, India
 全文: PDF(1177 KB)   HTML
收稿日期: 2020-11-16      出版日期: 2021-06-08
Corresponding Author(s): Manoranjan ARAKHA   
 引用本文:   
. [J]. Frontiers of Materials Science, 2021, 15(2): 177-191.
Bhabani Shankar DAS, Ankita DAS, Abhisek MISHRA, Manoranjan ARAKHA. Microbial cells as biological factory for nanoparticle synthesis. Front. Mater. Sci., 2021, 15(2): 177-191.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-021-0546-8
https://academic.hep.com.cn/foms/CN/Y2021/V15/I2/177
Fig.1  
Fig.2  
Fig.3  
Microorganism (Bacterium) Nanoparticles Characteristics (Size & Shape) Biosynthetic pathway Ref.
Bacillus subtilis Fe3O4 12–32 nm, spherical in shape extracellular [71]
Cupriavidus sp. Ag 10–50 nm, spherical crystalline shape extracellular [72]
Bacillus cereus Ag 43–159 nm, hexagonal shape extracellular [73]
Serratia sp. Ag 1–100 nm, circular, triangular and rods shapes extracellular [74]
Bacillus sp. B2 Se 20–50?nm, spherical shape extracellular [75]
Azospirillum brasilense Se 25–80?nm extracellular [76]
Acinetobacter schindleri SIZ7 ZnO 20–100 nm, spherical shape extracellular [77]
Gluconacetobacter liquefaciens IFO 12388 Au 10–30?nm, spherical shape intracellular [78]
Pseudomonas stutzeri Mg2+ 11.90–43.29 nm, spherical shape intracellular [79]
Pseudomonas chlororaphis CHR05 CdS (6.7±2.4) nm, spherical shape extracellular [80]
Tab.1  
Fig.4  
Microorganism (Fungus) Nanoparticles Characteristics (Size & Shape) Biosynthetic pathway Ref.
Monascus purpureus CoFe2O4 6.50 nm, spherical extracellular [85]
Aspergillus flavus Au 12 nm, spherical extracellular [86]
Ag 8.92 nm, spherical extracellular [87]
Aspergillus terreus Ag 100 nm, spherical extracellular [88]
Fusarium scirpi Ag 2–20 nm, quasi-spherical extracellular [89]
Penicillium oxalicum Ag 60–80 nm, spherical extracellular [90]
Beauveria bassiana Ag 10–50 nm, triangular, circular, hexagonal extracellular [91]
Fusarium nygamai Mn2+ 11.90–43.29 nm, spherical intracellular [79]
Aspergillus niger Cu 5–100 nm, spherical extracellular [92]
Aspergillus niger BSC-1 IO (iron oxide) 17.29 nm, flake extracellular [93]
Tab.2  
Fig.5  
Microorganism (Alga) Nanoparticles Characteristics (Size & Shape) Biosynthetic pathway Ref.
Gelidium corneum (marine red alga) Ag 20–40 nm, spherical extracellular [108]
Desmodesmus sp. (green alga) Ag 15–30 nm, spherical intracellular [109]
Sargassum wightii (marine alga) Ag 8–27 nm, spherical extracellular [110]
Sargassum wightii Au 8–12 nm, spherical extracellular [111]
Tetraselmis kochinensis Au 5–35 nm, spherical and triangular intracellular [112]
Kappaphycus alvarezii (marine alga) Au 12.5–40 nm, spherical extracellular [113]
Spirulina platensis (blue-green alga) Au 20–30 nm, spherical extracellular [114]
Turbinaria conaides Au, Ag 5–20 nm, spherical extracellular [115]
Gracilaria edulis (micro-alga) Ag & ZnO 55–99 nm, spherical & 66–95 nm, rod-shape extracellular [116]
Bifurcaria bifurcate (brown alga) CuO 5–45 nm, spherical extracellular [117]
Tab.3  
Fig.6  
Microorganism (Yeast) Nanoparticles Characteristics (Size & Shape) Biosynthetic pathway Ref.
Saccharomyces cerevisiae ??(Baker’s yeast) Ag 16.07 nm, oval shape extracellular [126]
Yeast strain MKY3 Ag 2–5 nm, hexagonal extracellular [127]
Magnusiomyces ingens LHF1 Se 70–90 nm, spherical and quasi-spherical intracellular [128]
Pichia jadinii Au 100 nm, spherical intracellular [129]
Schizosaccharomyces pombe CdS 1–1.5 nm, hexagonal intracellular [130]
Candida glabrata CdS 2 nm, spherical intracellular [131]
Rhodotorula mucilaginosa Cu 10.5 nm, spherical intracellular [132]
Torulopsis sp. PbS 2–5 nm, spherical intracellular [133]
Tab.4  
Microorganism (Virus) Nanoparticles Characteristics (Size & Shape) Biosynthetic pathway Ref.
M13 bacteriophage ZnS, CdS 3–5 nm, hexagonal wurtzite & 20 nm, cubical extracellular [140]
Tobacco mosaic virus (TMV) CdS, PbS, Si, Fe2O3 5 nm (tubular), 30 nm (prismatic or irregular in shape), 3 nm (tubular), 2–22 nm (rod) intracellular & extracellular [141]
Bacteriophage Au 20–100 nm (spheres, hexagons, triangles, rhomboids and rectangular) extracellular [142]
Cowpea mosaic virus (CPMV) Co, Ni, Fe, Pt, CoPt and NiFe ≤35 nm (shape was not given) intra cellular & extracellular [143]
Tab.5  
1 D S Goodsell. Bionanotechnology: Lessons from Nature. John Wiley & Sons, Inc., 2004
2 N Taniguchi. On the basic concept of nano-technology. Proceedings of the International Conference on Production Engineering, Tokyo, Japan, 1974, 18–23
3 M C Daniel, D Astruc. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 2004, 104(1): 293–346
https://doi.org/10.1021/cr030698+ pmid: 14719978
4 M Arakha, M Saleem, B C Mallick, et al.. The effects of interfacial potential on antimicrobial propensity of ZnO nanoparticle. Scientific Reports, 2015, 5(1): 9578
https://doi.org/10.1038/srep09578 pmid: 25873247
5 N Behera, M Arakha, M Priyadarshinee, et al.. Oxidative stress generated at nickel oxide nanoparticle interface results in bacterial membrane damage leading to cell death. RSC Advances, 2019, 9(43): 24888–24894
https://doi.org/10.1039/C9RA02082A
6 M Arakha, J Roy, P S Nayak, et al.. Zinc oxide nanoparticle energy band gap reduction triggers the oxidative stress resulting into autophagy-mediated apoptotic cell death. Free Radical Biology & Medicine, 2017, 110: 42–53
https://doi.org/10.1016/j.freeradbiomed.2017.05.015 pmid: 28528796
7 M Arakha, S Pal, D Samantarrai, et al.. Antimicrobial activity of iron oxide nanoparticle upon modulation of nanoparticle–bacteria interface. Scientific Reports, 2015, 5(1): 14813
https://doi.org/10.1038/srep14813 pmid: 26437582
8 S Dubchak, A Ogar, J W Mietelski, et al.. Influence of silver and titanium nanoparticles on arbuscular mycorrhiza colonization and accumulation of radiocaesium in Helianthus annuus. Spanish Journal of Agricultural Research, 2010, 8(S1): S103–S108
https://doi.org/10.5424/sjar/201008S1-1228
9 S Griffin, M I Masood, M J Nasim, et al.. Natural nanoparticles: A particular matter inspired by nature. Antioxidants, 2018, 7(1): 3
https://doi.org/10.3390/antiox7010003 pmid: 29286304
10 F Mafuné, J y Kohno, Y Takeda, et al.. Dissociation and aggregation of gold nanoparticles under laser irradiation. The Journal of Physical Chemistry B, 2001, 105(38): 9050–9056
https://doi.org/10.1021/jp0111620
11 T Y Chen, S F Chen, H S Sheu, et al.. Reactivity of laser-prepared copper nanoparticles: Oxidation of thiols to disulfides. The Journal of Physical Chemistry B, 2002, 106(38): 9717–9722
https://doi.org/10.1021/jp0205822
12 B Ershov, A Henglein. Optical spectrum and some chemical properties of colloidal thallium in aqueous solution. The Journal of Physical Chemistry, 1993, 97(13): 3434–3436
https://doi.org/10.1021/j100115a056
13 A Henglein. Radiolytic preparation of ultrafine colloidal gold particles in aqueous solution: Optical spectrum, controlled growth, and some chemical reactions. Langmuir, 1999, 15(20): 6738–6744
https://doi.org/10.1021/la9901579
14 A Henglein. Formation and absorption spectrum of copper nanoparticles from the radiolytic reduction of Cu(CN)2. The Journal of Physical Chemistry B, 2000, 104(6): 1206–1211
https://doi.org/10.1021/jp992950g
15 F Grieser, M Ashokkumar. Sonochemical synthesis of inorganic and organic colloids. In: F Caruso, ed. Colloids and Colloid Assemblies: Synthesis, Modification, Organization and Utilization of Colloid Particles. John Wiley & Sons, Inc., 2004, 120–149
16 K Wegner, B Walker, S Tsantilis, et al.. Design of metal nanoparticle synthesis by vapor flow condensation. Chemical Engineering Science, 2002, 57(10): 1753–1762
https://doi.org/10.1016/S0009-2509(02)00064-7
17 S Mishra, D Kshatri, A Khare, et al.. SrS:Ce3+ thin films for electroluminescence device applications deposited by electron-beam evaporation deposition method. Materials Letters, 2016, 183: 191–196
https://doi.org/10.1016/j.matlet.2016.07.097
18 S Mishra, D Kshatri, A Khare, et al.. Fabrication, characterization and electroluminescence studies of SrS:Ce3+ ACTFEL device. Materials Letters, 2017, 198: 101–105
https://doi.org/10.1016/j.matlet.2017.04.013
19 M T Swihart. Vapor-phase synthesis of nanoparticles. Current Opinion in Colloid & Interface Science, 2003, 8(1): 127–133
https://doi.org/10.1016/S1359-0294(03)00007-4
20 M L Rodríguez-Sánchez, M J Rodríguez, M C Blanco, et al.. Kinetics and mechanism of the formation of Ag nanoparticles by electrochemical techniques: A plasmon and cluster time-resolved spectroscopic study. The Journal of Physical Chemistry B, 2005, 109(3): 1183–1191
https://doi.org/10.1021/jp046056n pmid: 16851079
21 W Chen, W Cai, L Zhang, et al.. Sonochemical processes and formation of gold nanoparticles within pores of mesoporous silica. Journal of Colloid and Interface Science, 2001, 238(2): 291–295
https://doi.org/10.1006/jcis.2001.7525 pmid: 11374924
22 S Eustis, H Y Hsu, M A El-Sayed. Gold nanoparticle formation from photochemical reduction of Au3+ by continuous excitation in colloidal solutions. A proposed molecular mechanism. The Journal of Physical Chemistry B, 2005, 109(11): 4811–4815
https://doi.org/10.1021/jp0441588 pmid: 16863133
23 L Rodriguez-Sanchez, M Blanco, M Lopez-Quintela. Electrochemical synthesis of silver nanoparticles. The Journal of Physical Chemistry B, 2000, 104(41): 9683–9688
https://doi.org/10.1021/jp001761r
24 M Starowicz, B Stypuła, J Banaś. Electrochemical synthesis of silver nanoparticles. Electrochemistry Communications, 2006, 8(2): 227–230
https://doi.org/10.1016/j.elecom.2005.11.018
25 A Frattini, N Pellegri, D Nicastro, et al.. Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Materials Chemistry and Physics, 2005, 94(1): 148–152
https://doi.org/10.1016/j.matchemphys.2005.04.023
26 J Ai, E Biazar, M Jafarpour, et al.. Nanotoxicology and nanoparticle safety in biomedical designs. International Journal of Nanomedicine, 2011, 6: 1117–1127
pmid: 21698080
27 P S Nayak, M Arakha, A Kumar, et al.. An approach towards continuous production of silver nanoparticles using Bacillus thuringiensis. RSC Advances, 2016, 6(10): 8232–8242
https://doi.org/10.1039/C5RA21281B
28 S Panda, K K Yadav, P S Nayak, et al.. Screening of metal-resistant coal mine bacteria for biofabrication of elemental silver nanoparticle. Bulletin of Materials Science, 2016, 39(2): 397–404
https://doi.org/10.1007/s12034-016-1181-3
29 P S Anton, R Silberglitt, J Schneider. The Global Technology Revolution: Bio/Nano/Materials Trends and Their Synergies with Information Technology by 2015. RAND, 2001
30 A H Arnall. Future Technologies, Today’s Choices — Nanotechnology, Artificial Intelligence and Robotics: A Technical, Political and Institutional Map of Emerging Technologies. London: Greenpeace Environmental Trust, 2003
31 R Bhattacharya, P Mukherjee. Biological properties of “naked” metal nanoparticles. Advanced Drug Delivery Reviews, 2008, 60(11): 1289–1306
https://doi.org/10.1016/j.addr.2008.03.013 pmid: 18501989
32 K Simkiss, K M Wilbur. Biomineralization. Elsevier, 2012
33 S I Abdelrahim, A Z Almagboul, M E Omer, et al.. Antimicrobial activity of Psidium guajava L. Fitoterapia, 2002, 73(7–8): 713–715
https://doi.org/10.1016/S0367-326X(02)00243-5 pmid: 12490238
34 R P Feynman. There’s plenty of room at the bottom. California Institute of Technology, Engineering and Science Magazine, 1960, 23(5): 22–36
35 K E Drexler. Engines of Creation: The Coming Era of Nanotechnology. Anchor Books, 1987
36 U Gangopadhyay, S Das, S Jana, et al.. State of art of nanotechnology. International Journal of Engineering Research and Development, 2012, 3(6): 95–112
37 D L Fedlheim, C A Foss. Metal Nanoparticles: Synthesis, Characterization, and Applications. CRC Press, 2001
38 S Sepeur. Nanotechnology: Technical Basics and Applications. Germany: Vincentz Network GmbH & Co. KG, 2008
39 A R Shahverdi, M Shakibaie, P Nazari. Basic and practical procedures for microbial synthesis of nanoparticles. In: Rai M, Duran N, eds. Metal Nanoparticles in Microbiology. Springer Berlin Heidelberg, 2011, 177
40 G Singhal, R Bhavesh, K Kasariya, et al.. Biosynthesis of silver nanoparticles using Ocimum sanctum (Tulsi) leaf extract and screening its antimicrobial activity. Journal of Nanoparticle Research, 2011, 13(7): 2981–2988
https://doi.org/10.1007/s11051-010-0193-y
41 L Marchiol. Synthesis of metal nanoparticles in living plants. Italian Journal of Agronomy, 2012, 7(3): e37–e37
https://doi.org/10.4081/ija.2012.e37
42 T Satyanarayana, S S Reddy. A review on chemical and physical synthesis methods of nanomaterials. International Journal for Research in Applied Science and Engineering Technology, 2018, 6(1): 2885–2889
https://doi.org/10.22214/ijraset.2018.1396
43 S Renganathan, G P D Geoprincy, P Kalainila. Green synthesis of ecofriendly nanoparticles and their medical applications. In: Sivasubramanian V, ed. Environmental Sustainability Using Green Technologies. CRC Press, 2016
44 P Vishnukumar, S Sankaranarayanan, M Hariram, et al.. Carbon dots from renewable resources: A review on precursor choices and potential applications. Green Nanomaterials, 2020, 159–208
https://doi.org/10.1007/978-981-15-3560-4_7
45 M Kim, S Osone, T Kim, et al.. Synthesis of nanoparticles by laser ablation: A review. Kona Powder and Particle Journal, 2017, (34): 80–90
https://doi.org/10.14356/kona.2017009
46 A A Yaqoob, H Ahmad, T Parveen, et al.. Recent advances in metal decorated nanomaterials and their various biological applications: A review. Frontiers in Chemistry, 2020, 8: 341
https://doi.org/10.3389/fchem.2020.00341 pmid: 32509720
47 P S Nayak, S Pradhan, M Arakha, et al.. Silver nanoparticles fabricated using medicinal plant extracts show enhanced antimicrobial and selective cytotoxic propensities. IET Nanobiotechnology, 2019, 13(2): 193–201
https://doi.org/10.1049/iet-nbt.2018.5025 pmid: 31051451
48 M Sharma, P S Nayak, S Asthana, et al.. Biofabrication of silver nanoparticles using bacteria from mangrove swamp. IET Nanobiotechnology, 2018, 12(5): 626–632
https://doi.org/10.1049/iet-nbt.2017.0205
49 T M Abdelghany, A M H Al-Rajhi, M A Al Abboud, et al.. Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A review. Bionanoscience, 2018, 8(1): 5–16
https://doi.org/10.1007/s12668-017-0413-3
50 J Singh, T Dutta, K H Kim, et al.. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. Journal of Nanobiotechnology, 2018, 16(1): 84 (24 pages)
https://doi.org/10.1186/s12951-018-0408-4 pmid: 30373622
51 A Albanese, P S Tang, W C Chan. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 2012, 14(1): 1–16
https://doi.org/10.1146/annurev-bioeng-071811-150124 pmid: 22524388
52 P Singh, Y J Kim, D Zhang, et al.. Biological synthesis of nanoparticles from plants and microorganisms. Trends in Biotechnology, 2016, 34(7): 588–599
https://doi.org/10.1016/j.tibtech.2016.02.006 pmid: 26944794
53 L Sintubin, W Verstraete, N Boon. Biologically produced nanosilver: Current state and future perspectives. Biotechnology and Bioengineering, 2012, 109(10): 2422–2436
https://doi.org/10.1002/bit.24570 pmid: 22674445
54 S Mukherjee, V Sushma, S Patra, et al.. Green chemistry approach for the synthesis and stabilization of biocompatible gold nanoparticles and their potential applications in cancer therapy. Nanotechnology, 2012, 23(45): 455103
https://doi.org/10.1088/0957-4484/23/45/455103 pmid: 23064012
55 S Baker, D Rakshith, K Kumar, et al.. Plants: emerging as nanofactories towards facile route in synthesis of nanoparticles. BioImpacts, 2013, 3(3): 111–117
pmid: 24163802
56 Z Sadowski, I H Maliszewska, B Grochowalska, et al.. Synthesis of silver nanoparticles using microorganisms. Materials Science: Poland, 2008, 26(2): 419–424
57 A Ahmad, S Senapati, M I Khan, et al.. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir, 2003, 19(8): 3550–3553
https://doi.org/10.1021/la026772l
58 P Khandel, S K Shahi. Microbes mediated synthesis of metal nanoparticles: Current status and future prospects. International Journal of Nanomaterials and Biostructures, 2016, 6(1): 1–24
59 N Jain, A Bhargava, S Majumdar, et al.. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale, 2011, 3(2): 635–641
https://doi.org/10.1039/C0NR00656D pmid: 21088776
60 D Mandal, M E Bolander, D Mukhopadhyay, et al.. The use of microorganisms for the formation of metal nanoparticles and their application. Applied Microbiology and Biotechnology, 2006, 69(5): 485–492
https://doi.org/10.1007/s00253-005-0179-3 pmid: 16317546
61 K N Thakkar, S S Mhatre, R Y Parikh. Biological synthesis of metallic nanoparticles. Nanomedicine: Nanotechnology, Bio-logy, and Medicine, 2010, 6(2): 257–262
https://doi.org/10.1016/j.nano.2009.07.002 pmid: 19616126
62 N I Hulkoti, T C Taranath. Biosynthesis of nanoparticles using microbes — A review. Colloids and Surfaces B: Biointerfaces, 2014, 121: 474–483
https://doi.org/10.1016/j.colsurfb.2014.05.027 pmid: 25001188
63 A Ayesha. Bacterial synthesis and applications of nanoparticles. Nano Science & Nano Technology: An Indian Journal, 2017, 11(2): 119
64 M A Faramarzi, A Sadighi. Insights into biogenic and chemical production of inorganic nanomaterials and nanostructures. Advances in Colloid and Interface Science, 2013, 189–190: 1–20
https://doi.org/10.1016/j.cis.2012.12.001 pmid: 23332127
65 S Iravani. Bacteria in nanoparticle synthesis: Current status and future prospects. International Scholarly Research Notices, 2014, 2014: 359316 (18 pages)
https://doi.org/10.1155/2014/359316 pmid: 27355054
66 M Bandeira, M Giovanela, M Roesch-Ely, et al.. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustainable Che-mistry and Pharmacy, 2020, 15: 100223
https://doi.org/10.1016/j.scp.2020.100223
67 T Klaus-Joerger, R Joerger, E Olsson, et al.. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends in Biotechnology, 2001, 19(1): 15–20
https://doi.org/10.1016/S0167-7799(00)01514-6 pmid: 11146098
68 M D Mullen, D C Wolf, F G Ferris, et al.. Bacterial sorption of heavy metals. Applied and Environmental Microbiology, 1989, 55(12): 3143–3149
https://doi.org/10.1128/AEM.55.12.3143-3149.1989 pmid: 2515800
69 S He, Z Guo, Y Zhang, et al.. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Materials Letters, 2007, 61(18): 3984–3987
https://doi.org/10.1016/j.matlet.2007.01.018
70 M F Lengke, M E Fleet, G Southam. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex. Langmuir, 2007, 23(5): 2694–2699
https://doi.org/10.1021/la0613124 pmid: 17309217
71 A S Jubran, O M Al-Zamely, M H Al-Ammar. A study of iron oxide nanoparticles synthesis by using bacteria. International Journal of Pharmaceutical Quality Assurance, 2020, 11(1): 1–8
72 F Ameen, S AlYahya, M Govarthanan, et al.. Soil bacteria Cupriavidus sp. mediates the extracellular synthesis of antibacterial silver nanoparticles. Journal of Molecular Structure, 2020, 1202: 127233
https://doi.org/10.1016/j.molstruc.2019.127233
73 S Pawar, A Bhosale, S Gaikwad, et al.. Extracellular biosynthesis of silver nanoparticles using bacterial isolate from saline soil. Journal of Nanoscience and Technology, 2020, 869–873
74 C De Silva, A A M Noor, M M Abd Karim, et al.. The green synthesis and characterisation of silver nanoparticles from Serratia spp. Revista Mexicana de Ingeniería Química, 2020, 19(3): 1327–1339
https://doi.org/10.24275/rmiq/Bio1059
75 S Bharathi, S Kumaran, G Suresh, et al.. Extracellular synthesis of nanoselenium from fresh water bacteria Bacillus sp., and its validation of antibacterial and cytotoxic potential. Biocatalysis and Agricultural Biotechnology, 2020, 27: 101655
https://doi.org/10.1016/j.bcab.2020.101655
76 A V Tugarova, P V Mamchenkova, V A Khanadeev, et al.. Selenite reduction by the rhizobacterium Azospirillum brasilense, synthesis of extracellular selenium nanoparticles and their characterisation. New Biotechnology, 2020, 58: 17–24
https://doi.org/10.1016/j.nbt.2020.02.003 pmid: 32184193
77 S Busi, J Rajkumari, S Pattnaik, et al.. Extracellular synthesis of zinc oxide nanoparticles using Acinetobacter schindleri SIZ7 and its antimicrobial property against foodborne pathogens. Journal of Microbiology, Biotechnology and Food Sciences, 2016, 5(5): 407–411
https://doi.org/10.15414/jmbfs.2016.5.5.407-411
78 Y Liu, H Perumalsamy, C H Kang, et al.. Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages. Artificial Cells, Nanomedicine, and Biotechnology, 2020, 48(1): 777–788
https://doi.org/10.1080/21691401.2020.1748639 pmid: 32308043
79 N M Sidkey, R A Arafa, Y M Moustafa, et al.. Biosynthesis of mg and mn intracellular nanoparticles via extremo-metallotolerant Pseudomonas stutzeri, B4 Mg/W and Fusarium nygamai, F4 Mn/S. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 9(4): 1181–1187
80 M Ashengroph, A Khaledi, E M Bolbanabad. Extracellular biosynthesis of cadmium sulphide quantum dot using cell-free extract of Pseudomonas chlororaphis CHR05 and its antibacterial activity. Process Biochemistry, 2020, 89: 63–70
https://doi.org/10.1016/j.procbio.2019.10.028
81 S M Abdel-Aziz, R Prasad, A A Hamed, et al.. Fungal nanoparticles: A novel tool for a green biotechnology? In: Prasad R, Kumar V, Kumar M, eds. Fungal Nanobionics: Principles and Applications. Springer, 2018, 61–87
82 Y L Chen, H Y Tuan, C W Tien, et al.. Augmented biosynthesis of cadmium sulfide nanoparticles by genetically engineered Escherichia coli. Biotechnology Progress, 2009, 25(5): 1260–1266
https://doi.org/10.1002/btpr.199 pmid: 19630084
83 P Mohanpuria, N K Rana, S K Yadav. Biosynthesis of nanoparticles: technological concepts and future applications. Journal of Nanoparticle Research, 2008, 10(3): 507–517
https://doi.org/10.1007/s11051-007-9275-x
84 W Qin, C Y Wang, Y X Ma, et al.. Microbe-mediated extracellular and intracellular mineralization: Environmental, industrial, and biotechnological applications. Advanced Materials, 2020, 32(22): 1907833
https://doi.org/10.1002/adma.201907833 pmid: 32270552
85 E R El-Sayed, H K Abdelhakim, Z Zakaria. Extracellular biosynthesis of cobalt ferrite nanoparticles by Monascus purpureus and their antioxidant, anticancer and antimicrobial activities: Yield enhancement by gamma irradiation. Materials Science and Engineering C, 2020, 107: 110318
https://doi.org/10.1016/j.msec.2019.110318 pmid: 31761250
86 M A Abu-Tahon, M Ghareib, W E Abdallah. Environmentally benign rapid biosynthesis of extracellular gold nanoparticles using Aspergillus flavus and their cytotoxic and catalytic activities. Process Biochemistry, 2020, 95: 1–11
https://doi.org/10.1016/j.procbio.2020.04.015
87 B Priyanka. Biosynthesis of silver nanoparticles from Aspergillus flavus. Journal of Pharmaceutical Sciences and Research, 2020, 12(4): 583–586
88 R M Kumari, V Kumar, M Kumar, et al.. Extracellular biosynthesis of silver nanoparticles using Aspergillus terreus: Evaluation of its antibacterial and anticancer potential. Materials Today: Proceedings, 2020
https://doi.org/10.1016/j.matpr.2020.04.494
89 C Rodríguez-Serrano, J Guzmán-Moreno, C Ángeles-Chávez, et al.. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS One, 2020, 15(3): e0230275
https://doi.org/10.1371/journal.pone.0230275 pmid: 32163495
90 N Feroze, B Arshad, M Younas, et al.. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microscopy Research and Technique, 2020, 83(1): 72–80
https://doi.org/10.1002/jemt.23390 pmid: 31617656
91 S Tyagi, P K Tyagi, D Gola, et al.. Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: Characterization and antibacterial potential. SN Applied Sciences, 2019, 1(12): 1545
https://doi.org/10.1007/s42452-019-1593-y
92 S Noor, Z Shah, A Javed, et al.. A fungal based synthesis method for copper nanoparticles with the determination of anticancer, antidiabetic and antibacterial activities. Journal of Microbiological Methods, 2020, 174: 105966
https://doi.org/10.1016/j.mimet.2020.105966 pmid: 32474053
93 S Chatterjee, S Mahanty, P Das, et al.. Biofabrication of iron oxide nanoparticles using manglicolous fungus Aspergillus niger BSC-1 and removal of Cr(VI) from aqueous solution. Chemical Engineering Journal, 2020, 385: 123790
https://doi.org/10.1016/j.cej.2019.123790
94 N Thajuddin, G Subramanian. Survey of cyanobacterial flora of the southern east coast of India. Botanica Marina, 1992, 35(4): 305–314
https://doi.org/10.1515/botm.1992.35.4.305
95 N Thajuddin, G Subramanian. Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 2005, 89(1): 47–57
96 F L Oscar, D Bakkiyaraj, C Nithya, et al.. Deciphering the diversity of microalgal bloom in wastewater — An attempt to construct potential consortia for bioremediation. Journal of Current Perspectives in Applied Microbiology, 2014, 2278: 92
97 R E Lee. Phycology. 4th ed. Cambridge: Cambridge University Press, 2008
98 M N Johansen, ed. Microalgae: Biotechnology, Microbiology and Energy. New York: Nova Science Publishers, Inc., 2012
99 M A Borowitzka. High-value products from microalgae — their development and commercialisation. Journal of Applied Phyco-logy, 2013, 25(3): 743–756
https://doi.org/10.1007/s10811-013-9983-9
100 S F Sing, A Isdepsky, M Borowitzka, et al.. Production of biofuels from microalgae. Mitigation and Adaptation Strategies for Global Change, 2013, 18(1): 47–72
https://doi.org/10.1007/s11027-011-9294-x
101 A Sharma, S Sharma, K Sharma, et al.. Algae as crucial organisms in advancing nanotechnology: A systematic review. Journal of Applied Phycology, 2016, 28(3): 1759–1774
https://doi.org/10.1007/s10811-015-0715-1
102 D Sharma, S Kanchi, K Bisetty. Biogenic synthesis of nanoparticles: A review. Arabian Journal of Chemistry, 2019, 12(8): 3576–3600
https://doi.org/10.1016/j.arabjc.2015.11.002
103 S A Davis, H M Patel, E L Mayes, et al.. Brittle bacteria: A biomimetic approach to the formation of fibrous composite materials. Chemistry of Materials, 1998, 10(9): 2516–2524
https://doi.org/10.1021/cm9802853
104 S A Dahoumane, C Djediat, C Yéprémian, et al.. Recycling and adaptation of Klebsormidium flaccidum microalgae for the sustained production of gold nanoparticles. Biotechnology and Bioengineering, 2012, 109(1): 284–288
https://doi.org/10.1002/bit.23276 pmid: 21809325
105 S A Dahoumane, K Wijesekera, C D Filipe, et al.. Stoichiometrically controlled production of bimetallic gold–silver alloy colloids using micro-alga cultures. Journal of Colloid and Interface Science, 2014, 416: 67–72
https://doi.org/10.1016/j.jcis.2013.10.048 pmid: 24370403
106 F LewisOscar, S Vismaya, M Arunkumar, et al.. Algal nanoparticles: Synthesis and biotechnological potentials. Algae-Organisms for Imminent Biotechnology, 2016, 7: 157–182
107 P D Shankar, S Shobana, I Karuppusamy, et al.. A review on the biosynthesis of metallic nanoparticles (gold and silver) using bio-components of microalgae: Formation mechanism and applications. Enzyme and Microbial Technology, 2016, 95: 28–44
https://doi.org/10.1016/j.enzmictec.2016.10.015 pmid: 27866624
108 B Y Öztürk, B Y Gürsu, İ Dağ. Antibiofilm and antimicrobial activities of green synthesized silver nanoparticles using marine red algae Gelidium corneum. Process Biochemistry, 2020, 89: 208–219
https://doi.org/10.1016/j.procbio.2019.10.027
109 Y Dağlıoğlu, B Y Öztürk. A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): Different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali, 2019, 30(3): 611–621
https://doi.org/10.1007/s12210-019-00822-8
110 K Govindaraju, V Kiruthiga, V G Kumar, et al.. Extracellular synthesis of silver nanoparticles by a marine alga, Sargassum wightii Grevilli and their antibacterial effects. Journal of Nanoscience and Nanotechnology, 2009, 9(9): 5497–5501
https://doi.org/10.1166/jnn.2009.1199 pmid: 19928252
111 G Singaravelu, J S Arockiamary, V G Kumar, et al.. A novel extracellular synthesis of monodisperse gold nanoparticles using marine alga, Sargassum wightii Greville. Colloids and Surfaces B: Biointerfaces, 2007, 57(1): 97–101
https://doi.org/10.1016/j.colsurfb.2007.01.010 pmid: 17350236
112 S Senapati, A Syed, S Moeez, et al.. Intracellular synthesis of gold nanoparticles using alga Tetraselmis kochinensis. Materials Letters, 2012, 79: 116–118
https://doi.org/10.1016/j.matlet.2012.04.009
113 P Rajasulochana, R Dhamotharan, P Murugakoothan, et al.. Biosynthesis and characterization of gold nanoparticles using the alga Kappaphycus alvarezii. International Journal of Nanoscience, 2010, 9(5): 511–516
https://doi.org/10.1142/S0219581X10007149
114 T Kalabegishvili, E Kirkesali, A Rcheulishvili. Synthesis of gold nanoparticles by blue-green algae Spirulina platensis. Journal of Applied Microbiology and Biotechnology, 2012
115 I M Chung, I Park, K Seung-Hyun, et al.. Plant-mediated synthesis of silver nanoparticles: Their characteristic properties and therapeutic applications. Nanoscale Research Letters, 2016, 11(1): 40
https://doi.org/10.1186/s11671-016-1257-4 pmid: 26821160
116 R I Priyadharshini, G Prasannaraj, N Geetha, et al.. Microwave-mediated extracellular synthesis of metallic silver and zinc oxide nanoparticles using macro-algae (Gracilaria edulis) extracts and its anticancer activity against human PC3 cell lines. Applied Biochemistry and Biotechnology, 2014, 174(8): 2777–2790
https://doi.org/10.1007/s12010-014-1225-3 pmid: 25380639
117 Y Abboud, T Saffaj, A Chagraoui, et al.. Biosynthesis, characterization and antimicrobial activity of copper oxide nanoparticles (CONPs) produced using brown alga extract (Bifurcaria bifurcata). Applied Nanoscience, 2014, 4(5): 571–576
https://doi.org/10.1007/s13204-013-0233-x
118 E Yong. Yeast suggests speedy start for multicellular life. NATNews, 16-Jan-2012,
https://doi.org/10.1038/nature.2012.9810
119 C N Frey. History and development of the modern yeast industry. Industrial & Engineering Chemistry, 1930, 22(11): 1154–1162
https://doi.org/10.1021/ie50251a012
120 G M Walker. Yeast Physiology and Biotechnology. John Wiley & Sons, Inc., 1998
121 P Anand, J Isar, S Saran, et al.. Bioaccumulation of copper by Trichoderma viride. Bioresource Technology, 2006, 97(8): 1018–1025
https://doi.org/10.1016/j.biortech.2005.04.046 pmid: 16324839
122 D Kumar, L Karthik, G Kumar, et al.. Biosynthesis of silver nanoparticles from marine yeast and their antimicrobial activity against multidrug resistant pathogens. Pharmacologyonline, 2011, 3: 1100–1111
123 R Varshney, S Bhadauria, M S Gaur. A review: Biological synthesis of silver and copper nanoparticles. Nano Biomedicine and Engineering, 2012, 4(2): 99–106
https://doi.org/10.5101/nbe.v4i2.p99-106
124 M R Salvadori, R A Ando, D Muraca, et al.. Magnetic nanoparticles of Ni/NiO nanostructured in film form synthesized by dead organic matrix of yeast. RSC Advances, 2016, 6(65): 60683–60692
https://doi.org/10.1039/C6RA07274G
125 M R Salvadori, R A Ando, C A O Nascimento, et al.. Dead biomass of Amazon yeast: A new insight into bioremediation and recovery of silver by intracellular synthesis of nanoparticles. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 2017, 52(11): 1112–1120
https://doi.org/10.1080/10934529.2017.1340754 pmid: 28763240
126 I Olobayotan, B Akin-Osanaiye. Biosynthesis of silver nanoparticles using Baker’s yeast, Saccharomyces cerevisiae and its antibacterial activities. Access Microbiology, 2019, 1(1A): 526
https://doi.org/10.1099/acmi.ac2019.po0316
127 M Kowshik, S Ashtaputre, S Kharrazi, et al.. Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology, 2003, 14(1): 95–100
https://doi.org/10.1088/0957-4484/14/1/321
128 S Lian, C S Diko, Y Yan, et al.. Characterization of biogenic selenium nanoparticles derived from cell-free extracts of a novel yeast Magnusiomyces ingens. 3 Biotech, 2019, 9(6): 221
https://doi.org/10.1007/s13205-019-1748-y
129 M Gericke, A Pinches. Biological synthesis of metal nanoparticles. Hydrometallurgy, 2006, 83(1–4): 132–140
https://doi.org/10.1016/j.hydromet.2006.03.019
130 M Kowshik, N Deshmukh, W Vogel, et al.. Microbial synthesis of semiconductor CdS nanoparticles, their characterization, and their use in the fabrication of an ideal diode. Biotechnology and Bioengineering, 2002, 78(5): 583–588
https://doi.org/10.1002/bit.10233 pmid: 12115128
131 C Dameron, R Reese, R Mehra, et al.. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature, 1989, 338(6216): 596–597
https://doi.org/10.1038/338596a0
132 M R Salvadori, R A Ando, C A Oller do Nascimento, et al.. Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One, 2014, 9(1): e87968
https://doi.org/10.1371/journal.pone.0087968 pmid: 24489975
133 D K Golhani, A Khare, G K Burra, et al.. Microbes induced biofabrication of nanoparticles: A review. Inorganic and Nano-Metal Chemistry, 2020, 50(10): 983–999
https://doi.org/10.1080/24701556.2020.1731539
134 H Lodish, A Berk, S L Zipursky, et al.. Molecular mechanisms of eukaryotic transcriptional control. In: Lodish H, ed. Molecular Cell Biology. 4th ed. New York: WH Freeman Co., 2000
135 L A Lee, Z Niu, Q Wang. Viruses and virus-like protein assemblies — Chemically programmable nanoscale building blocks. Nano Research, 2009, 2(5): 349–364
https://doi.org/10.1007/s12274-009-9033-8
136 S Brumfield, D Willits, L Tang, et al.. Heterologous expression of the modified coat protein of cowpea chlorotic mottle bromovirus results in the assembly of protein cages with altered architectures and function. The Journal of General Virology, 2004, 85(4): 1049–1053
https://doi.org/10.1099/vir.0.19688-0 pmid: 15039547
137 M T Klem, D Willits, M Young, et al.. 2-D array formation of genetically engineered viral cages on au surfaces and imaging by atomic force microscopy. Journal of the American Chemical Society, 2003, 125(36): 10806–10807
https://doi.org/10.1021/ja0363718 pmid: 12952458
138 P Singh, M J Gonzalez, M Manchester. Viruses and their uses in nanotechnology. Drug Development Research, 2006, 67(1): 23–41
https://doi.org/10.1002/ddr.20064
139 J K Pokorski, N F Steinmetz. The art of engineering viral nanoparticles. Molecular Pharmaceutics, 2011, 8(1): 29–43
https://doi.org/10.1021/mp100225y pmid: 21047140
140 C Mao, C E Flynn, A Hayhurst, et al.. Viral assembly of oriented quantum dot nanowires. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100(12): 6946–6951
https://doi.org/10.1073/pnas.0832310100 pmid: 12777631
141 W Shenton, T Douglas, M Young, et al.. Inorganic–organic nanotube composites from template mineralization of tobacco mosaic virus. Advanced Materials, 1999, 11(3): 253–256
https://doi.org/10.1002/(SICI)1521-4095(199903)11:3<253::AID-ADMA253>3.0.CO;2-7
142 S S Ahiwale, A V Bankar, S Tagunde, et al.. A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian Journal of Microbiology, 2017, 57(2): 188–194
https://doi.org/10.1007/s12088-017-0640-x pmid: 28611496
143 A A Aljabali, J E Barclay, G P Lomonossoff, et al.. Virus templated metallic nanoparticles. Nanoscale, 2010, 2(12): 2596–2600
https://doi.org/10.1039/c0nr00525h pmid: 20877898
144 A Bansal, H Yang, C Li, et al.. Quantitative equivalence between polymer nanocomposites and thin polymer films. Nature Materials, 2005, 4(9): 693–698
https://doi.org/10.1038/nmat1447 pmid: 16086021
145 A Gade, P Bonde, A Ingle, et al.. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. Journal of Biobased Materials and Bioenergy, 2008, 2(3): 243–247
https://doi.org/10.1166/jbmb.2008.401
146 M Rai, A Ingle. Role of nanotechnology in agriculture with special reference to management of insect pests. Applied Microbiology and Biotechnology, 2012, 94(2): 287–293
https://doi.org/10.1007/s00253-012-3969-4 pmid: 22388570
147 D P Cunningham, L L Lundie. Precipitation of cadmium by Clostridium thermoaceticum. Applied and Environmental Microbiology, 1993, 59(1): 7–14
https://doi.org/10.1128/AEM.59.1.7-14.1993 pmid: 8439169
148 M Gajbhiye, J Kesharwani, A Ingle, et al.. Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine: Nanotechnology, Biology, and Medicine, 2009, 5(4): 382–386
https://doi.org/10.1016/j.nano.2009.06.005 pmid: 19616127
149 K Punjabi, P Choudhary, L Samant, et al.. Biosynthesis of nanoparticles: A review. International Journal of Pharmaceutical Sciences Review and Research, 2015, 30(1): 219–226
150 E T Thostenson, C Li, T W Chou. Nanocomposites in context. Composites Science and Technology, 2005, 65(3–4): 491–516
https://doi.org/10.1016/j.compscitech.2004.11.003
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed