Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2021, Vol. 15 Issue (2): 299-304   https://doi.org/10.1007/s11706-021-0550-z
  本期目录
In-situ hydrothermal synthesis of Bi6O6(OH)3(NO3)3·1.5H2O--BiOCl heterojunction with highly photocatalytic hydrogen evolution activity
Shichang SUN1,2, Yifan JIANG1, Wei XIAO1, Weiming ZHOU1, Liwei WANG2(), Zhanhui YUAN1()
1. College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China
2. Ocean College, Minjiang University, Fuzhou 350108, China
 全文: PDF(934 KB)   HTML
收稿日期: 2020-11-12      出版日期: 2021-06-08
Corresponding Author(s): Liwei WANG,Zhanhui YUAN   
 引用本文:   
. [J]. Frontiers of Materials Science, 2021, 15(2): 299-304.
Shichang SUN, Yifan JIANG, Wei XIAO, Weiming ZHOU, Liwei WANG, Zhanhui YUAN. In-situ hydrothermal synthesis of Bi6O6(OH)3(NO3)3·1.5H2O--BiOCl heterojunction with highly photocatalytic hydrogen evolution activity. Front. Mater. Sci., 2021, 15(2): 299-304.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-021-0550-z
https://academic.hep.com.cn/foms/CN/Y2021/V15/I2/299
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
1 X Han, L An, Y Hu, et al.. Ti3C2 MXene-derived carbon-doped TiO2 coupled with g-C3N4 as the visible-light photocatalysts for photocatalytic H2 generation. Applied Catalysis B: Environmental, 2020, 265: 118539
https://doi.org/10.1016/j.apcatb.2019.118539
2 Y Huo, Z Li, J Zhang, et al.. Defect-mediated electron–hole separation in an inorganic–organic CdSxSe1−x–DETA solid solution under amine molecule-assisted fabrication and microwave-assisted method for promoting photocatalytic H2 evolution. Sustainable Energy & Fuels, 2019, 3(12): 3550–3560
https://doi.org/10.1039/C9SE00633H
3 D Xing, Y Liu, P Zhou, et al.. Enhanced photocatalytic hydrogen evolution of CdWO4 through polar organic molecule modification. International Journal of Hydrogen Energy, 2019, 44(10): 4754–4763
https://doi.org/10.1016/j.ijhydene.2019.01.002
4 H Li, J Li, Z Ai, et al.. Oxygen vacancy-mediated photocatalysis of BiOCl: Reactivity, selectivity, and perspectives. Angewandte Chemie International Edition, 2018, 57(1): 122–138
https://doi.org/10.1002/anie.201705628 pmid: 28635079
5 Y Tan, Z Shu, J Zhou, et al.. One-step synthesis of nanostructured g-C3N4/TiO2 composite for highly enhanced visible-light photocatalytic H2 evolution. Applied Catalysis B: Environmental, 2018, 230: 260–268
https://doi.org/10.1016/j.apcatb.2018.02.056
6 Y Yang, H Liang, N Zhu, et al.. New type of [Bi6O6(OH)3]-(NO3)3·1.5H2O sheets photocatalyst with high photocatalytic activity on degradation of phenol. Chemosphere, 2013, 93(4): 701–707
https://doi.org/10.1016/j.chemosphere.2013.06.062 pmid: 23953139
7 L Yao, Z Chen, Z Lu, et al.. Plasmonic Bi metal as a co-catalyst deposited on C-doped Bi6O6(OH)3(NO3)3·1.5H2O for efficient visible light photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 389: 112290
https://doi.org/10.1016/j.jphotochem.2019.112290
8 S Sun, X Jiang, W Xiao, et al.. A simple method for construction of Bi2O3/Bi6O6(OH)3(NO3)3·1.5H2O p–n junction photocatalyst with superior photocatalytic performance. Materials Letters, 2020, 276: 128199
https://doi.org/10.1016/j.matlet.2020.128199
9 L M Yang, G Y Zhang, Y Liu, et al.. A {1 1 0} facet predominated Bi6O6(OH)3(NO3)3·1.5H2O photocatalyst: Selective hydrothermal synthesis and its superior photocatalytic activity for degradation of phenol. RSC Advances, 2015, 5(97): 79715–79723
https://doi.org/10.1039/C5RA15629G
10 X Zhang, D An, D Feng, et al.. In situ surfactant-free synthesis of ultrathin BiOCl/g-C3N4 nanosheets for enhanced visible-light photodegradation of rhodamine B. Applied Surface Science, 2019, 476: 706–715
https://doi.org/10.1016/j.apsusc.2019.01.147
11 C Wang, X Yi, P Wang. Powerful combination of MOFs and C3N4 for enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2019, 247: 24–48
https://doi.org/10.1016/j.apcatb.2019.01.091
12 Q Li, L Li, X Zhang, et al.. Hydrothermal synthesis of Bi6O6(OH)3(NO3)3·1.5H2O/BiOCl heterojunction with highly enhanced photocatalytic activity. Catalysis Communications, 2018, 107: 53–56
https://doi.org/10.1016/j.catcom.2018.01.003
13 Y Cui, L M Yang, G Y Zhang, et al.. Facile one-pot preparation of Bi6O6(OH)3(NO3)3·1.5H2O–Bi2WO6 heterostructure with superior photocatalytic activity. Catalysis Communications, 2015, 59: 83–87
https://doi.org/10.1016/j.catcom.2014.10.001
14 Y Liu, Z Wang, B Huang, et al.. Enhanced photocatalytic degradation of organic pollutants over basic bismuth(III) nitrate/BiVO4 composite. Journal of Colloid and Interface Science, 2010, 348(1): 211–215
https://doi.org/10.1016/j.jcis.2010.04.019 pmid: 20478568
15 X Hu, L Cheng, G Li. One-pot hydrothermal fabrication of basic bismuth nitrate/BiOBr composite with enhanced photocatalytic activity. Materials Letters, 2017, 203: 77–80
https://doi.org/10.1016/j.matlet.2017.05.123
16 Q Wang, W Wang, L Zhong, et al.. Oxygen vacancy-rich 2D/2D BiOCl–g-C3N4 ultrathin heterostructure nanosheets for enhanced visible-light-driven photocatalytic activity in environmental remediation. Applied Catalysis B: Environmental, 2018, 220: 290–302
https://doi.org/10.1016/j.apcatb.2017.08.049
17 T Wu, X Li, D Zhang, et al.. Efficient visible light photocatalytic oxidation of NO with hierarchical nanostructured 3D flower-like BiOClxBr1−x solid solutions. Journal of Alloys and Compounds, 2016, 671: 318–327
https://doi.org/10.1016/j.jallcom.2016.01.267
18 L Wang, D Cui, L Ren, et al.. Boosting NIR-driven photocatalytic water splitting by constructing 2D/3D epitaxial heterostructures. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2019, 7(22): 13629–13634
https://doi.org/10.1039/C9TA02780G
19 M Zhao, X Hou, L Lv, et al.. Synthesis of Ag/AgCl modified anhydrous basic bismuth nitrate from BiOCl and the antibacterial activity. Materials Science and Engineering C, 2019, 98: 83–88
https://doi.org/10.1016/j.msec.2018.12.116 pmid: 30813089
20 C Liu, J Zhou, J Su, et al.. Turning the unwanted surface bismuth enrichment to favourable BiVO4/BiOCl heterojunction for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2019, 241: 506–513
https://doi.org/10.1016/j.apcatb.2018.09.060
21 S Liu, Y Liu, G Dai, et al.. Synthesis and characterization of novel Bi2S3/BiOCl/g-C3N4 composite with efficient visible-light photocatalytic activity. Materials Letters, 2019, 241: 190–193
https://doi.org/10.1016/j.matlet.2019.01.087
22 J Liu, J Zhou, H Yin, et al.. One-pot synthesis of 3D flower-like Bi2S3/BiOCl heterostructures at room temperature with enhanced visible-light photocatalytic activity. Materials Letters, 2019, 255: 126568
https://doi.org/10.1016/j.matlet.2019.126568
23 F Deng, Q Zhang, L Yang, et al.. Visible-light-responsive graphene-functionalized Bi-bridge Z-scheme black BiOCl/Bi2O3 heterojunction with oxygen vacancy and multiple charge transfer channels for efficient photocatalytic degradation of 2-nitroph. Applied Catalysis B: Environmental, 2018, 238: 61–69
https://doi.org/10.1016/j.apcatb.2018.05.004
24 W Hou, H Xu, Y Cai, et al.. Precisely control interface OVs concentration for enhance 0D/2D Bi2O2CO3/BiOCl photocatalytic performance. Applied Surface Science, 2020, 530: 147218
https://doi.org/10.1016/j.apsusc.2020.147218
25 R Jiang, D Wu, G Lu, et al.. Modified 2D–2D ZnIn2S4/BiOCl van der Waals heterojunctions with CQDs: Accelerated charge transfer and enhanced photocatalytic activity under vis- and NIR-light. Chemosphere, 2019, 227: 82–92
https://doi.org/10.1016/j.chemosphere.2019.04.038 pmid: 30986605
26 X Hu, Z Sun, J Song, et al.. Synthesis of novel ternary heterogeneous BiOCl/TiO2/sepiolite composite with enhanced visible-light-induced photocatalytic activity towards tetracycline. Journal of Colloid and Interface Science, 2019, 533: 238–250
https://doi.org/10.1016/j.jcis.2018.08.077 pmid: 30165301
27 D Sánchez-Rodríguez, M G Méndez Medrano, H Remita, et al.. Photocatalytic properties of BiOCl–TiO2 composites for phenol photodegradation. Journal of Environmental Chemical Engineering, 2018, 6(2): 1601–1612
https://doi.org/10.1016/j.jece.2018.01.061
28 Y Shi, X Xiong, S Ding, et al.. In-situ topotactic synthesis and photocatalytic activity of plate-like BiOCl/2D networks Bi2S3 heterostructures. Applied Catalysis B: Environmental, 2018, 220: 570–580
https://doi.org/10.1016/j.apcatb.2017.08.074
29 Q Li, Z Guan, D Wu, et al.. Z-scheme BiOCl–Au–CdS heterostructure with enhanced sunlight-driven photocatalytic activity in degrading water dyes and antibiotics. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6958–6968
https://doi.org/10.1021/acssuschemeng.7b01157
30 H Wang, W Zhang, X Li, et al.. Highly enhanced visible light photocatalysis and in situ FT-IR studies on Bi metal@defective BiOCl hierarchical microspheres. Applied Catalysis B: Environmental, 2018, 225: 218–227
https://doi.org/10.1016/j.apcatb.2017.11.079
31 H Lu, Q Hao, T Chen, et al.. A high-performance Bi2O3/Bi2SiO5 p–n heterojunction photocatalyst induced by phase transition of Bi2O3. Applied Catalysis B: Environmental, 2018, 237: 59–67
https://doi.org/10.1016/j.apcatb.2018.05.069
32 H Wang, B Wang, Y Bian, et al.. Enhancing photocatalytic activity of graphitic carbon nitride by codoping with P and C for efficient hydrogen generation. ACS Applied Materials & Interfaces, 2017, 9(26): 21730–21737
https://doi.org/10.1021/acsami.7b02445 pmid: 28557418
33 Y Ma, Q Han, X Wang, et al.. An in situ annealing route to [Bi6O6(OH)2](NO3)4·2H2O/g-C3N4 heterojunction and its visible-light-driven photocatalytic performance. Materials Research Bulletin, 2018, 101: 272–279
https://doi.org/10.1016/j.materresbull.2018.01.046
34 C Feng, D Wang, B Jin, et al.. The enhanced photocatalytic properties of BiOCl/BiVO4 p–n heterojunctions via plasmon resonance of metal Bi. RSC Advances, 2015, 5(93): 75947–75952
https://doi.org/10.1039/C5RA13886H
35 H S El-Sheshtawy, H M El-Hosainy, K R Shoueir, et al.. Facile immobilization of Ag nanoparticles on g-C3N4/V2O5 surface for enhancement of post-illumination, catalytic, and photocatalytic activity removal of organic and inorganic pollutants. Applied Surface Science, 2019, 467: 268–276
https://doi.org/doi:10.1016/j.apsusc.2018.10.109
36 C Y Wang, Y J Zhang, W K Wang, et al.. Enhanced photocatalytic degradation of bisphenol A by Co-doped BiOCl nanosheets under visible light irradiation. Applied Catalysis B: Environmental, 2018, 221: 320–328
https://doi.org/10.1016/j.apcatb.2017.09.036
37 J W Shi, Y Zou, L Cheng, et al.. In-situ phosphating to synthesize Ni2P decorated NiO/g-C3N4 p–n junction for enhanced photocatalytic hydrogen production. Chemical Engineering Journal, 2019, 378: 122161
https://doi.org/10.1016/j.cej.2019.122161
38 M Yan, Y Hua, F Zhu, et al.. Fabrication of nitrogen doped graphene quantum dots-BiOI/MnNb2O6 p–n junction photocatalysts with enhanced visible light efficiency in photocatalytic degradation of antibiotics. Applied Catalysis B: Environmental, 2017, 202: 518–527
https://doi.org/10.1016/j.apcatb.2016.09.039
39 G Liu, T Wang, S Ouyang, et al.. Band-structure-controlled BiO-(ClBr)(1−x)/2Ix solid solutions for visible-light photocatalysis. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2015, 3(15): 8123–8132
https://doi.org/10.1039/C4TA07128J
40 L Hao, H Huang, Y Guo, et al.. Bismuth oxychloride homogeneous phasejunction BiOCl/Bi12O17Cl2 with unselectively efficient photocatalytic activity and mechanism insight. Applied Surface Science, 2017, 420: 303–312
https://doi.org/10.1016/j.apsusc.2017.05.076
41 W Zhou, S Sun, Y Jiang, et al.. Template in situ synthesis of flower-like BiOBr/microcrystalline cellulose composites with highly visible-light photocatalytic activity. Cellulose, 2019, 26(18): 9529–9541
https://doi.org/10.1007/s10570-019-02722-4
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed