Please wait a minute...
Frontiers of Materials Science

ISSN 2095-025X

ISSN 2095-0268(Online)

CN 11-5985/TB

邮发代号 80-974

2019 Impact Factor: 1.747

Frontiers of Materials Science  2021, Vol. 15 Issue (3): 456-464   https://doi.org/10.1007/s11706-021-0566-4
  本期目录
Large-scale synthesis of metal nanosheets as highly active catalysts: Combining accumulative roll-bonding and etching process
Yuxin OUYANG1, Juan LIU2, Yue XIN1, Wenkun ZHU3, Hailiang YU2(), Liangbing WANG1()
1. State Key Laboratory for Powder Metallurgy, Key Laboratory of Electronic Packing and Advanced Functional Materials of Hunan Province, School of Materials Science and Engineering, Central South University, Changsha 410083, China
2. State Key Laboratory of High Performance Complex Manufacturing, College of Mechanical and Electrical Engineering, Light Alloys Research Institute, Central South University, Changsha 410083, China
3. State Key Laboratory of Environment-friendly Energy Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
 全文: PDF(972 KB)   HTML
收稿日期: 2021-05-17      出版日期: 2021-09-24
Corresponding Author(s): Hailiang YU,Liangbing WANG   
 引用本文:   
. [J]. Frontiers of Materials Science, 2021, 15(3): 456-464.
Yuxin OUYANG, Juan LIU, Yue XIN, Wenkun ZHU, Hailiang YU, Liangbing WANG. Large-scale synthesis of metal nanosheets as highly active catalysts: Combining accumulative roll-bonding and etching process. Front. Mater. Sci., 2021, 15(3): 456-464.
 链接本文:  
https://academic.hep.com.cn/foms/CN/10.1007/s11706-021-0566-4
https://academic.hep.com.cn/foms/CN/Y2021/V15/I3/456
Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
1 X K Kong, K Xu, C L Zhang, et al.. Free-standing two-dimensional Ru nanosheets with high activity toward water splitting. ACS Catalysis, 2016, 6(3): 1487–1492
https://doi.org/10.1021/acscatal.5b02730
2 B Jiang, Y Guo, J Kim, et al.. Mesoporous metallic iridium nanosheets. Journal of the American Chemical Society, 2018, 140(39): 12434–12441
https://doi.org/10.1021/jacs.8b05206 pmid: 30129750
3 W Chen, W Gao, P Tu, et al.. Neighboring Pt atom sites in an ultrathin FePt nanosheet for the efficient and highly CO-tolerant oxygen reduction reaction. Nano Letters, 2018, 18(9): 5905–5912
https://doi.org/10.1021/acs.nanolett.8b02606 pmid: 30064214
4 G Wu, X Zheng, P Cui, et al.. A general synthesis approach for amorphous noble metal nanosheets. Nature Communications, 2019, 10(1): 4855
https://doi.org/10.1038/s41467-019-12859-2 pmid: 31649272
5 N Yang, Z Zhang, B Chen, et al.. Synthesis of ultrathin PdCu alloy nanosheets used as a highly efficient electrocatalyst for formic acid oxidation. Advanced Materials, 2017, 29(29): 1700769
https://doi.org/10.1002/adma.201700769 pmid: 28585235
6 Z Y Liu, X Y Yang, B Q Lu, et al.. Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Applied Catalysis B: Environmental, 2019, 243: 86–93
https://doi.org/10.1016/j.apcatb.2018.10.028
7 X Huang, S Tang, X Mu, et al.. Freestanding palladium nanosheets with plasmonic and catalytic properties. Nature Nanotechnology, 2011, 6(1): 28–32
https://doi.org/10.1038/nnano.2010.235 pmid: 21131956
8 H Huang, L Xia, X Shi, et al.. Ag nanosheets for efficient electrocatalytic N2 fixation to NH3 under ambient conditions. Chemical Communications, 2018, 54(81): 11427–11430
https://doi.org/10.1039/C8CC06365F pmid: 30246829
9 A Funatsu, H Tateishi, K Hatakeyama, et al.. Synthesis of monolayer platinum nanosheets. Chemical Communications, 2014, 50(62): 8503–8506
https://doi.org/10.1039/C4CC02527J pmid: 24947470
10 P Strasser, S Koh, T Anniyev, et al.. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nature Chemistry, 2010, 2(6): 454–460
https://doi.org/10.1038/nchem.623 pmid: 20489713
11 T Gao, Y Wang, K Wang, et al.. Controlled synthesis of homogeneous Ag nanosheet-assembled film for effective SERS substrate. ACS Applied Materials & Interfaces, 2013, 5(15): 7308–7314
https://doi.org/10.1021/am401552x pmid: 23829572
12 M M Shahjamali, M Salvador, M Bosman, et al.. Edge-gold-coated silver nanoprisms: Enhanced stability and applications in organic photovoltaics and chemical sensing. The Journal of Physical Chemistry C, 2014, 118(23): 12459–12468
https://doi.org/10.1021/jp501884s
13 Y G Feng, B L Huang, C Y Yang, et al.. Platinum porous nanosheets with high surface distortion and Pt utilization for enhanced oxygen reduction catalysis. Advanced Functional Materials, 2019, 29(45): 1904429 (10 pages)
https://doi.org/10.1002/adfm.201904429
14 M Farsadrooh, J Torrero, L Pascual, et al.. Two-dimensional Pd-nanosheets as efficient electrocatalysts for ethanol electrooxidation. Evidences of the C−C scission at low potentials. Applied Catalysis B: Environmental, 2018, 237: 866–875
https://doi.org/10.1016/j.apcatb.2018.06.051
15 G D Moon, G H Lim, J H Song, et al.. Highly stretchable patterned gold electrodes made of Au nanosheets. Advanced Materials, 2013, 25(19): 2707–2712
https://doi.org/10.1002/adma.201300794 pmid: 23568566
16 S Cho, J H Song, M Kong, et al.. Fully elastic conductive films from viscoelastic composites. ACS Applied Materials & Interfaces, 2017, 9(50): 44096–44105
https://doi.org/10.1021/acsami.7b14504 pmid: 29181972
17 H Duan, N Yan, R Yu, et al.. Ultrathin rhodium nanosheets. Nature Communications, 2014, 5(1): 3093
https://doi.org/10.1038/ncomms4093 pmid: 24435210
18 L Y Zhang, Y Ouyang, S Wang, et al.. Perforated Pd nanosheets with crystalline/amorphous heterostructures as a highly active robust catalyst toward formic acid oxidation. Small, 2019, 15(47): 1904245
https://doi.org/10.1002/smll.201904245 pmid: 31617305
19 R Dang, L Song, W Dong, et al.. Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics. ACS Applied Materials & Interfaces, 2014, 6(1): 622–629
https://doi.org/10.1021/am404708z pmid: 24313540
20 L Dai, Q Qin, P Wang, et al.. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Science Advances, 2017, 3(9): e1701069
https://doi.org/10.1126/sciadv.1701069 pmid: 28913427
21 Y Saito, H Utsunomiya, N Tsuji, et al.. Novel ultra-high straining process for bulk materials-development of the accumulative roll-bonding (ARB) process. Acta Materialia, 1999, 47(2): 579–583
https://doi.org/10.1016/S1359-6454(98)00365-6
22 H L Yu, L H Su, C Lu, et al.. Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageing. Materials Science and Engineering A, 2016, 674: 256–261
https://doi.org/10.1016/j.msea.2016.08.003
23 C Wu, H T Tan, W J Huang, et al.. A new scalable preparation of metal nanosheets: Potential applications for aqueous Zn-ion batteries anode. Advanced Functional Materials, 2020, 30(34): 2003187
https://doi.org/10.1002/adfm.202003187
24 L Ma, Y S Cheng, G Cavataio, et al.. In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Applied Catalysis B: Environmental, 2014, 156-157: 428–437
https://doi.org/10.1016/j.apcatb.2014.03.048
25 S Z Andersen, V Čolić, S Yang, et al.. A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements. Nature, 2019, 570(7762): 504–508
https://doi.org/10.1038/s41586-019-1260-x pmid: 31117118
26 P Prieto, V Nistor, K Nouneh, et al.. XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Applied Surface Science, 2012, 258(22): 8807–8813
https://doi.org/10.1016/j.apsusc.2012.05.095
27 S Ghosh, T S Khan, A Ghosh, et al.. Utility of silver nanoparticles embedded covalent organic frameworks as recyclable catalysts for the sustainable synthesis of cyclic carbamates and 2-oxazolidinones via atmospheric cyclizative CO2 capture. ACS Sustainable Chemistry & Engineering, 2020, 8(14): 5495–5513
https://doi.org/10.1021/acssuschemeng.9b06704
28 T Wang, B J Jin, Z B Jiao, et al.. Photo-directed growth of Au nanowires on ZnO arrays for enhancing photoelectrochemical performances. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(37): 15553–15559
https://doi.org/10.1039/C4TA02960G
29 H L Peng, Y C Z Xie, Z C Xie, et al.. Large-scale and facile synthesis of a porous high-entropy alloy CrMnFeCoNi as an efficient catalyst. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2020, 8(35): 18318–18326
https://doi.org/10.1039/D0TA04940A
30 F Wang, S Song, K Li, et al.. A “solid dual-ions-transformation” route to S,N co-doped carbon nanotubes as highly efficient “metal-free” catalysts for organic reactions. Advanced Materials, 2016, 28(48): 10679–10683
https://doi.org/10.1002/adma.201603608 pmid: 27748988
31 L Q Ye, J Y Liu, C Q Gong, et al.. Two different roles of metallic Ag on Ag/AgX/BiOX (X= Cl, Br) visible light photocatalysts: Surface plasmon resonance and Z-scheme bridge. ACS Catalysis, 2012, 2(8): 1677–1683
https://doi.org/10.1021/cs300213m
32 Y X Tang, Z L Jiang, G C Xing, et al.. Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes. Advanced Functional Materials, 2013, 23(23): 2932–2940
https://doi.org/10.1002/adfm.201203379
33 T T Hou, H L Peng, Y Xin, et al.. Fe single-atom catalyst for visible-light-driven photofixation of nitrogen sensitized by triphenylphosphine and sodium iodide. ACS Catalysis, 2020, 10(10): 5502–5510
https://doi.org/10.1021/acscatal.0c00920
34 Z H Ying, S T Chen, S Zhang, et al.. Efficiently enhanced N2 photofixation performance of sea-urchin-like W18O49 microspheres with Mn-doping. Applied Catalysis B: Environmental, 2019, 254: 351–359
https://doi.org/10.1016/j.apcatb.2019.05.005
35 H Jia, A Du, H Zhang, et al.. Site-selective growth of crystalline ceria with oxygen vacancies on gold nanocrystals for near-infrared nitrogen photofixation. Journal of the American Chemical Society, 2019, 141(13): 5083–5086
https://doi.org/10.1021/jacs.8b13062 pmid: 30897901
36 J Yang, Y Guo, W Lu, et al.. Emerging applications of plasmons in driving CO2 reduction and N2 fixation. Advanced Materials, 2018, 30(48): 1802227
https://doi.org/10.1002/adma.201802227 pmid: 30039589
37 T T Hou, Q Li, Y D Zhang, et al.. Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Applied Catalysis B: Environmental, 2020, 273: 119072
https://doi.org/10.1016/j.apcatb.2020.119072
38 T T Hou, R H Guo, L L Chen, et al.. Atomic-level insights in tuning defective structures for nitrogen photofixation over amorphous SmOCl nanosheets. Nano Energy, 2019, 65: 104003
https://doi.org/10.1016/j.nanoen.2019.104003
39 M Lan, N Zheng, X Dong, et al.. Bismuth-rich bismuth oxyiodide microspheres with abundant oxygen vacancies as an efficient photocatalyst for nitrogen fixation. Dalton Transactions, 2020, 49(26): 9123–9129
https://doi.org/10.1039/D0DT01332C pmid: 32573590
40 X H Li, W L Chen, H Q Tan, et al.. Reduced state of the graphene oxide@polyoxometalate nanocatalyst achieving high-efficiency nitrogen fixation under light driving conditions. ACS Applied Materials & Interfaces, 2019, 11(41): 37927–37938
https://doi.org/10.1021/acsami.9b12328 pmid: 31549811
41 X H Li, P He, T Wang, et al.. Keggin-type polyoxometalate-based ZIF-67 for enhanced photocatalytic nitrogen fixation. ChemSusChem, 2020, 13(10): 2769–2778
https://doi.org/10.1002/cssc.202000328 pmid: 32112521
42 S X Wang, H Maimaiti, B Xu, et al.. Synthesis and visible-light photocatalytic N2/H2O to ammonia of ZnS nanoparticles supported by petroleum pitch-based graphene oxide. Applied Surface Science, 2019, 493: 514–524
https://doi.org/10.1016/j.apsusc.2019.06.287
43 A G Shende, C S Tiwari, T T Bhoyar, et al.. BWO nano-octahedron coupled with layered g-C3N4: An efficient visible light active photocatalyst for degradation of cationic/anionic dyes, and N2 reduction. Journal of Molecular Liquids, 2019, 296: 111771
https://doi.org/10.1016/j.molliq.2019.111771
44 S Z Liu, Y J Wang, S B Wang, et al.. Photocatalytic fixation of nitrogen to ammonia by single Ru atom decorated TiO2 nanosheets. ACS Sustainable Chemistry & Engineering, 2019, 7(7): 6813–6820
https://doi.org/10.1021/acssuschemeng.8b06134
45 M B Yahia, Y B Torkia, S Knani, et al.. Models for type VI adsorption isotherms from a statistical mechanical formulation. Adsorption Science and Technology, 2013, 31(4): 341–357
https://doi.org/10.1260/0263-6174.31.4.341
46 Y Q Lei, S Y Xu, M Ding, et al.. Enhanced photocatalysis by synergistic piezotronic effect and exciton–plasmon interaction based on (Ag–Ag2S)/BaTiO3 heterostructures. Advanced Functional Materials, 2020, 30(51): 2005716
https://doi.org/10.1002/adfm.202005716
47 A Muzikansky, P Nanikashvili, J Grinblat, et al.. Ag dewetting in Cu@Ag monodisperse core–shell nanoparticles. The Journal of Physical Chemistry C, 2013, 117(6): 3093–3100
https://doi.org/10.1021/jp3109545
48 T T Hou, Y Xiao, P X Cui, et al.. Operando oxygen vacancies for enhanced activity and stability toward nitrogen photofixation. Advanced Energy Materials, 2019, 9(43): 1902319
https://doi.org/10.1002/aenm.201902319
49 T T Hou, L L Chen, Y Xin, et al.. Porous CuFe for plasmon-assisted N2 photofixation. ACS Energy Letters, 2020, 5(7): 2444–2451
https://doi.org/10.1021/acsenergylett.0c00959
[1] FMS-21566-OF-OYyx_suppl_1 Download
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed