The design and development of multifunctional nano-drug delivery systems (NDDSs) is a solution that is expected to solve some intractable problems in traditional cancer treatment. In particular, metal-organic frameworks (MOFs) are novel hybrid porous nanomaterials which are constructed by the coordination of metal cations or clusters and organic bridging ligands. Benefiting from their intrinsic superior properties, MOFs have captivated intensive attentions in drug release and cancer theranostic. Based on what has been achieved about MOF-based DDSs in recent years, this review introduces different stimuli-responsive mechanisms of them and their applications in cancer diagnosis and treatment systematically. Moreover, the existing challenges and future opportunities in this field are summarized. By realizing industrial production and paying attention to biosafety, their clinical applications will be enriched.
H He, H Xie, Y Chen, et al.. Global, regional, and national burdens of bladder cancer in 2017: Estimates from the 2017 global burden of disease study. BMC Public Health, 2020, 20(1): 1693 https://doi.org/10.1186/s12889-020-09835-7
pmid: 33176751
2
H Sung, J Ferlay, R L Siegel, et al.. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 2021, 71(3): 209–249 https://doi.org/10.3322/caac.21660
pmid: 33538338
3
M Zhang, Y Ma, Z Wang, et al.. A CD44-targeting programmable drug delivery system for enhancing and sensitizing chemotherapy to drug-resistant cancer. ACS Applied Materials & Interfaces, 2019, 11(6): 5851–5861 https://doi.org/10.1021/acsami.8b19798
pmid: 30648841
J D Obayemi, A A Salifu, S C Eluu, et al.. LHRH-conjugated drugs as targeted therapeutic agents for the specific targeting and localized treatment of triple negative breast cancer. Scientific Reports, 2020, 10(1): 8212 https://doi.org/10.1038/s41598-020-64979-1
pmid: 32427904
6
I Mittra, K Pal, N Pancholi, et al.. Prevention of chemotherapy toxicity by agents that neutralize or degrade cell-free chromatin. Annals of Oncology, 2017, 28(9): 2119–2127 https://doi.org/10.1093/annonc/mdx318
pmid: 28911066
7
Y Ding, Y Ma, C Du, et al.. NO-releasing polypeptide nanocomposites reverse cancer multidrug resistance via triple therapies. Acta Biomaterialia, 2021, 123: 335–345 https://doi.org/10.1016/j.actbio.2021.01.015
pmid: 33476826
8
P Mi. Stimuli-responsive nanocarriers for drug delivery, tumor imaging, therapy and theranostics. Theranostics, 2020, 10(10): 4557–4588 https://doi.org/10.7150/thno.38069
pmid: 32292515
9
S Raj, S Khurana, R Choudhari, et al.. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in Cancer Biology, 2021, 69: 166–177 https://doi.org/10.1016/j.semcancer.2019.11.002
pmid: 31715247
10
H Liu, W Jiang, Q Wang, et al.. ROS-sensitive biomimetic nanocarriers modulate tumor hypoxia for synergistic photodynamic chemotherapy. Biomaterials Science, 2019, 7(9): 3706–3716 https://doi.org/10.1039/C9BM00634F
pmid: 31187794
11
A Pandey, S Kulkarni, A P Vincent, et al.. Hyaluronic acid-drug conjugate modified core–shell MOFs as pH responsive nanoplatform for multimodal therapy of glioblastoma. International Journal of Pharmaceutics, 2020, 588: 119735 https://doi.org/10.1016/j.ijpharm.2020.119735
pmid: 32763386
12
V Sanfilippo, V C L Caruso, L M Cucci, et al.. Hyaluronan-metal gold nanoparticle hybrids for targeted tumor cell therapy. International Journal of Molecular Sciences, 2020, 21(9): 3085–3111 https://doi.org/10.3390/ijms21093085
pmid: 32349323
13
J Chen, Y Ma, W Du, et al.. Furin-instructed intracellular gold nanoparticle aggregation for tumor photothermal therapy. Advanced Functional Materials, 2020, 30(50): 2001566 https://doi.org/10.1002/adfm.202001566
14
M Kong, Y Huang, R Yu, et al.. Coordination bonding-based Fe3O4@PDA-Zn2+-doxorubicin nanoparticles for tumor chemo-photothermal therapy. Journal of Drug Delivery Science and Technology, 2019, 51: 185–193 https://doi.org/10.1016/j.jddst.2019.02.030
15
W Wen, L Wu, Y Chen, et al.. Ultra-small Fe3O4 nanoparticles for nuclei targeting drug delivery and photothermal therapy. Journal of Drug Delivery Science and Technology, 2020, 58: 101782 https://doi.org/10.1016/j.jddst.2020.101782
16
Y Guan, Y Yang, X Wang, et al.. Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells. Journal of Molecular Liquids, 2021, 327: 114783 https://doi.org/10.1016/j.molliq.2020.114783
17
L Huang, J Liu, F Gao, et al.. A dual-responsive, hyaluronic acid targeted drug delivery system based on hollow mesoporous silica nanoparticles for cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2018, 6(28): 4618–4629 https://doi.org/10.1039/C8TB00989A
pmid: 32254406
18
M Shao, C Chang, Z Liu, et al.. Polydopamine coated hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for overcoming multidrug resistance. Colloids and Surfaces B: Biointerfaces, 2019, 183: 110427 https://doi.org/10.1016/j.colsurfb.2019.110427
pmid: 31408782
19
K Chen, C Chang, Z Liu, et al.. Hyaluronic acid targeted and pH-responsive nanocarriers based on hollow mesoporous silica nanoparticles for chemo-photodynamic combination therapy. Colloids and Surfaces B: Biointerfaces, 2020, 194: 111166 https://doi.org/10.1016/j.colsurfb.2020.111166
pmid: 32521461
20
J Saleem, L Wang, C Chen. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Advanced Healthcare Materials, 2018, 7(20): 1800525 https://doi.org/10.1002/adhm.201800525
pmid: 30073803
21
K P Loh, D Ho, G N C Chiu, et al.. Clinical applications of carbon nanomaterials in diagnostics and therapy. Advanced Materials, 2018, 30(47): 1802368 https://doi.org/10.1002/adma.201802368
pmid: 30133035
22
B P Jiang, B Zhou, Z Lin, et al.. Recent advances in carbon nanomaterials for cancer phototherapy. Chemistry, 2019, 25(16): 3993–4004 https://doi.org/10.1002/chem.201804383
pmid: 30328167
23
S Zhao, W Cao, S Xing, et al.. Enhancing effects of theanine liposomes as chemotherapeutic agents for tumor therapy. ACS Biomaterials Science & Engineering, 2019, 5(7): 3373–3379 https://doi.org/10.1021/acsbiomaterials.9b00317
pmid: 33405579
24
K Zhang, Y Zhang, X Meng, et al.. Light-triggered theranostic liposomes for tumor diagnosis and combined photodynamic and hypoxia-activated prodrug therapy. Biomaterials, 2018, 185: 301–309 https://doi.org/10.1016/j.biomaterials.2018.09.033
pmid: 30265899
25
Y Yang, X Liu, W Ma, et al.. Light-activatable liposomes for repetitive on-demand drug release and immunopotentiation in hypoxic tumor therapy. Biomaterials, 2021, 265: 120456 https://doi.org/10.1016/j.biomaterials.2020.120456
pmid: 33099066
26
L Yang, C Zhang, J Liu, et al.. ICG-conjugated and 125I-labeled polymeric micelles with high biosafety for multimodality imaging-guided photothermal therapy of tumors. Advanced Healthcare Materials, 2020, 9(5): 1901616 https://doi.org/10.1002/adhm.201901616
pmid: 31990442
27
C Hu, W Zhuang, T Yu, et al.. Multi-stimuli responsive polymeric prodrug micelles for combined chemotherapy and photodynamic therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(24): 5267–5279 https://doi.org/10.1039/D0TB00539H
pmid: 32441291
28
S Zhong, C Chen, G Yang, et al.. Acid-triggered nanoexpansion polymeric micelles for enhanced photodynamic therapy. ACS Applied Materials & Interfaces, 2019, 11(37): 33697–33705 https://doi.org/10.1021/acsami.9b12620
pmid: 31487149
29
X Li, Y Zhang, X Zhi, et al.. Analysis of clinical efficacy of nano-albumin paclitaxel treatment for advanced cell lung cancer. Journal of Nanoscience and Nanotechnology, 2020, 20(10): 6019–6025 https://doi.org/10.1166/jnn.2020.18556
pmid: 32384947
30
Y Zhou, C Chang, Z Liu, et al.. Hyaluronic acid-functionalized hollow mesoporous silica nanoparticles as pH-sensitive nanocarriers for cancer chemo-photodynamic therapy. Langmuir, 2021, 37(8): 2619–2628 https://doi.org/10.1021/acs.langmuir.0c03250
pmid: 33586432
31
L Zhang, X Shi, Z Zhang, et al.. Porphyrinic zirconium metal-organic frameworks (MOFs) as heterogeneous photocatalysts for PET-RAFT polymerization and stereolithography. Angewandte Chemie International Edition, 2021, 60(10): 5489–5496 https://doi.org/10.1002/anie.202014208
pmid: 33179352
32
E Gulcay, I Erucar. Biocompatible MOFs for storage and separation of O2: A molecular simulation study. Industrial & Engineering Chemistry Research, 2019, 58(8): 3225–3237 https://doi.org/10.1021/acs.iecr.8b04084
33
H Daglar, H C Gulbalkan, G Avci, et al.. Effect of metal-organic framework (MOF) database selection on the assessment of gas storage and separation potentials of MOFs. Angewandte Chemie International Edition, 2021, 60(14): 7828–7837 https://doi.org/10.1002/anie.202015250
pmid: 33443312
34
M Hao, M Qiu, H Yang, et al.. Recent advances on preparation and environmental applications of MOF-derived carbons in catalysis. Science of the Total Environment, 2021, 760: 143333 https://doi.org/10.1016/j.scitotenv.2020.143333
pmid: 33190884
35
M J Neufeld, H Winter, M R Landry, et al.. Lanthanide metal-organic frameworks for multispectral radioluminescent imaging. ACS Applied Materials & Interfaces, 2020, 12(24): 26943–26954 https://doi.org/10.1021/acsami.0c06010
pmid: 32442367
36
X Gao, R Cui, G Ji, et al.. Size and surface controllable metal-organic frameworks (MOFs) for fluorescence imaging and cancer therapy. Nanoscale, 2018, 10(13): 6205–6211 https://doi.org/10.1039/C7NR08892B
pmid: 29560986
37
P Kumar, B Anand, Y F Tsang, et al.. Regeneration, degradation, and toxicity effect of MOFs: Opportunities and challenges. Environmental Research, 2019, 176: 108488 https://doi.org/10.1016/j.envres.2019.05.019
pmid: 31295665
38
J Schnabel, R Ettlinger, H Bunzen. Zn-MOF-74 as pH-responsive drug-delivery system of arsenic trioxide. Chem-NanoMat, 2020, 6(8): 1229–1236 https://doi.org/10.1002/cnma.202000221
39
Z Liu, T Li, F Han, et al.. A cascade-reaction enabled synergistic cancer starvation/ROS-mediated/chemo-therapy with an enzyme modified Fe-based MOF. Biomaterials Science, 2019, 7(9): 3683–3692 https://doi.org/10.1039/C9BM00641A
pmid: 31361291
40
Y Xiao, M Xu, N Lv, et al.. Dual stimuli-responsive metal-organic framework-based nanosystem for synergistic photothermal/pharmacological antibacterial therapy. Acta Biomaterialia, 2021, 122: 291–305 https://doi.org/10.1016/j.actbio.2020.12.045
pmid: 33359766
41
S Liang, X Xiao, L Bai, et al.. Conferring Ti-based MOFs with defects for enhanced sonodynamic cancer therapy. Advanced Materials, 2021, 33(18): 2100333 https://doi.org/10.1002/adma.202100333
pmid: 33792083
42
Q Sun, H Bi, Z Wang, et al.. Hyaluronic acid-targeted and pH-responsive drug delivery system based on metal-organic frameworks for efficient antitumor therapy. Biomaterials, 2019, 223: 119473 https://doi.org/10.1016/j.biomaterials.2019.119473
pmid: 31499255
43
Z Jiang, T Wang, S Yuan, et al.. A tumor-sensitive biological metal-organic complex for drug delivery and cancer therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(32): 7189–7196 https://doi.org/10.1039/D0TB00599A
pmid: 32618980
44
W Pan, M Shi, Y Li, et al.. A GSH-responsive nanophotosensitizer for efficient photodynamic therapy. RSC Advances, 2018, 8(74): 42374–42379 https://doi.org/10.1039/C8RA08549H
45
L Y Yu, Y A Shen, M H Chen, et al.. The feasibility of ROS- and GSH-responsive micelles for treating tumor-initiating and metastatic cancer stem cells. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(19): 3109–3118 https://doi.org/10.1039/C8TB02958J
46
E Sameiyan, E Bagheri, S Dehghani, et al.. Aptamer-based ATP-responsive delivery systems for cancer diagnosis and treatment. Acta Biomaterialia, 2021, 123: 110–122 https://doi.org/10.1016/j.actbio.2020.12.057
pmid: 33453405
47
L Yuwen, Q Qiu, W Xiu, et al.. Hyaluronidase-responsive phototheranostic nanoagents for fluorescence imaging and photothermal/photodynamic therapy of methicillin-resistant Staphylococcus aureus infections. Biomaterials Science, 2021, 9(12): 4484–4495 https://doi.org/10.1039/D1BM00406A
pmid: 34002742
48
N Zhang, M Li, X Sun, et al.. NIR-responsive cancer cytomembrane-cloaked carrier-free nanosystems for highly efficient and self-targeted tumor drug delivery. Biomaterials, 2018, 159: 25–36 https://doi.org/10.1016/j.biomaterials.2018.01.007
pmid: 29309991
49
Y Ding, C Du, J Qian, et al.. NIR-responsive polypeptide nanocomposite generates NO gas, mild photothermia, and chemotherapy to reverse multidrug-resistant cancer. Nano Letters, 2019, 19(7): 4362–4370 https://doi.org/10.1021/acs.nanolett.9b00975
pmid: 31199153
50
W Zhang, J Lu, X Gao, et al.. Enhanced photodynamic therapy by reduced levels of intracellular glutathione obtained by employing a nano-MOF with Cu(II) as the active center. Angewandte Chemie International Edition, 2018, 57(18): 4891–4896 https://doi.org/10.1002/anie.201710800
pmid: 29451722
51
M Sabz, R Kamali, S Ahmadizade. Numerical simulation of magnetic drug targeting to a tumor in the simplified model of the human lung. Computer Methods and Programs in Biomedicine, 2019, 172: 11–24 https://doi.org/10.1016/j.cmpb.2019.02.001
pmid: 30902122
52
S Shen, D Huang, J Cao, et al.. Magnetic liposomes for light-sensitive drug delivery and combined photothermal-chemotherapy of tumors. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2019, 7(7): 1096–1106 https://doi.org/10.1039/C8TB02684J
pmid: 32254777
53
T G Nguyen Cao, J H Kang, J Y You, et al.. Safe and targeted sonodynamic cancer therapy using biocompatible exosome-based nanosonosensitizers. ACS Applied Materials & Interfaces, 2021, 13(22): 25575–25588 https://doi.org/10.1021/acsami.0c22883
pmid: 34033477
54
M Mathesh, J Sun, F van der Sandt, et al.. Supramolecular nanomotors with “pH taxis” for active drug delivery in the tumor microenvironment. Nanoscale, 2020, 12(44): 22495–22501 https://doi.org/10.1039/D0NR04415F
pmid: 33169767
55
T Yan, S Zhu, W Hui, et al.. Chitosan based pH-responsive polymeric prodrug vector for enhanced tumor targeted co-delivery of doxorubicin and siRNA. Carbohydrate Polymers, 2020, 250: 116781 https://doi.org/10.1016/j.carbpol.2020.116781
pmid: 33049806
56
I A Lázaro, S Haddad, S Sacca, et al.. Selective surface PEGylation of UiO-66 nanoparticles for enhanced stability, cell uptake, and pH-responsive drug delivery. Chem, 2017, 2(4): 561–578 https://doi.org/10.1016/j.chempr.2017.02.005
pmid: 28516168
57
K Jiang, L Zhang, Q Hu, et al.. Indocyanine green-encapsulated nanoscale metal-organic frameworks for highly effective chemo-photothermal combination cancer therapy. Materials Today Nano, 2018, 2: 50–57 https://doi.org/10.1016/j.mtnano.2018.09.001
58
S Yu, S Wang, Z Xie, et al.. Hyaluronic acid coating on the surface of curcumin-loaded ZIF-8 nanoparticles for improved breast cancer therapy: An in vitro and in vivo study. Colloids and Surfaces B: Biointerfaces, 2021, 203: 111759 https://doi.org/10.1016/j.colsurfb.2021.111759
pmid: 33892283
59
Y T Qin, H Peng, X W He, et al.. pH-responsive polymer-stabilized ZIF-8 nanocomposites for fluorescence and magnetic resonance dual-modal imaging-guided chemo-/photodynamic combinational cancer therapy. ACS Applied Materials & Interfaces, 2019, 11(37): 34268–34281 https://doi.org/10.1021/acsami.9b12641
pmid: 31454217
60
J Zhu, H Li, Z Xiong, et al.. Polyethyleneimine-coated manganese oxide nanoparticles for targeted tumor PET/MR imaging. ACS Applied Materials & Interfaces, 2018, 10(41): 34954–34964 https://doi.org/10.1021/acsami.8b12355
pmid: 30234287
61
Z Liu, N Shen, Z Tang, et al.. An eximious and affordable GSH stimulus-responsive poly(α-lipoic acid) nanocarrier bonding combretastatin A4 for tumor therapy. Biomaterials Science, 2019, 7(7): 2803–2811 https://doi.org/10.1039/C9BM00002J
pmid: 31062006
62
C Lin, H He, Y Zhang, et al.. Acetaldehyde-modified-cystine functionalized Zr-MOFs for pH/GSH dual-responsive drug delivery and selective visualization of GSH in living cells. RSC Advances, 2020, 10(6): 3084–3091 https://doi.org/10.1039/C9RA05741B
63
J Li, Y Wang, S Sun, et al.. Disulfide bond-based self-crosslinked carbon-dots for turn-on fluorescence imaging of GSH in living cells. The Analyst, 2020, 145(8): 2982–2987 https://doi.org/10.1039/D0AN00071J
pmid: 32124898
64
B Lei, M Wang, Z Jiang, et al.. Constructing redox-responsive metal-organic framework nanocarriers for anticancer drug delivery. ACS Applied Materials & Interfaces, 2018, 10(19): 16698–16706 https://doi.org/10.1021/acsami.7b19693
pmid: 29692177
65
Y Liu, C S Gong, Y Dai, et al.. In situ polymerization on nanoscale metal-organic frameworks for enhanced physiological stability and stimulus-responsive intracellular drug delivery. Biomaterials, 2019, 218: 119365–119375 https://doi.org/10.1016/j.biomaterials.2019.119365
pmid: 31344642
66
J Deng, K Wang, M Wang, et al.. Mitochondria targeted nanoscale zeolitic imidazole framework-90 for ATP imaging in live cells. Journal of the American Chemical Society, 2017, 139(16): 5877–5882 https://doi.org/10.1021/jacs.7b01229
pmid: 28385016
67
X R Song, S H Li, J Dai, et al.. Polyphenol-inspired facile construction of smart assemblies for ATP- and pH-responsive tumor MR/Optical imaging and photothermal therapy. Small, 2017, 13(20): 1603997 https://doi.org/10.1002/smll.201603997
pmid: 28383201
68
W H Chen, X Yu, A Cecconello, et al.. Stimuli-responsive nucleic acid-functionalized metal-organic framework nanoparticles using pH- and metal-ion-dependent DNAzymes as locks. Chemical Science, 2017, 8(8): 5769–5780 https://doi.org/10.1039/C7SC01765K
pmid: 28989617
69
W H Chen, W C Liao, Y S Sohn, et al.. Stimuli-responsive nucleic acid-based polyacrylamide hydrogel-coated metal-organic framework nanoparticles for controlled drug release. Advanced Functional Materials, 2018, 28(8): 1705137 https://doi.org/10.1002/adfm.201705137
70
S S Wan, L Zhang, X Z Zhang. An ATP-regulated ion transport nanosystem for homeostatic perturbation therapy and sensitizing photodynamic therapy by autophagy inhibition of tumors. ACS Central Science, 2019, 5(2): 327–340 https://doi.org/10.1021/acscentsci.8b00822
pmid: 30834321
71
W Zuo, D Chen, Z Fan, et al.. Design of light/ROS cascade-responsive tumor-recognizing nanotheranostics for spatiotemporally controlled drug release in locoregional photo-chemotherapy. Acta Biomaterialia, 2020, 111: 327–340 https://doi.org/10.1016/j.actbio.2020.04.052
pmid: 32434075
72
W Lv, H Xia, L Zou, et al.. Yolk–shell structured Au nanorods@mesoporous silica for gas bubble driven drug release upon near-infrared light irradiation. Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 32: 102326 https://doi.org/10.1016/j.nano.2020.102326
pmid: 33166666
73
X Zhu, Q Su, W Feng, et al.. Anti-Stokes shift luminescent materials for bio-applications. Chemical Society Reviews, 2017, 46(4): 1025–1039 https://doi.org/10.1039/C6CS00415F
pmid: 27966684
74
J Xu, A Gulzar, Y Liu, et al.. Integration of IR-808 sensitized upconversion nanostructure and MoS2 nanosheet for 808 nm NIR light triggered phototherapy and bioimaging. Small, 2017, 13(36): 17018141 https://doi.org/10.1002/smll.201701841
pmid: 28737290
75
M Lismont, L Dreesen, S Wuttke. Metal-organic framework nanoparticles in photodynamic therapy: Current status and perspectives. Advanced Functional Materials, 2017, 27(14): 1606314 https://doi.org/10.1002/adfm.201606314
76
J Park, Q Jiang, D Feng, et al.. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. Journal of the American Chemical Society, 2016, 138(10): 3518–3525 https://doi.org/10.1021/jacs.6b00007
pmid: 26894555
B Li, X Wang, L Chen, et al.. Ultrathin Cu-TCPP MOF nanosheets: A new theragnostic nanoplatform with magnetic resonance/near-infrared thermal imaging for synergistic phototherapy of cancers. Theranostics, 2018, 8(15): 4086–4096 https://doi.org/10.7150/thno.25433
pmid: 30128038
79
Y Wang, L Shi, D Ma, et al.. Tumor-activated and metal-organic framework assisted self-assembly of organic photosensitizers. ACS Nano, 2020, 14(10): 13056–13068 https://doi.org/10.1021/acsnano.0c04518
pmid: 33016697
80
D Yang, J Xu, G Yang, et al.. Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles. Chemical Engineering Journal, 2018, 344: 363–374 https://doi.org/10.1016/j.cej.2018.03.101
81
J Huang, Z Xu, Y Jiang, et al.. Metal organic framework-coated gold nanorod as an on-demand drug delivery platform for chemo-photothermal cancer therapy. Journal of Nanobiotechnology, 2021, 19(1): 219 https://doi.org/10.1186/s12951-021-00961-x
pmid: 34281545
82
X Cai, Z Xie, B Ding, et al.. Monodispersed copper(I)-based nano metal-organic framework as a biodegradable drug carrier with enhanced photodynamic therapy efficacy. Advanced Science, 2019, 6(15): 1900848 https://doi.org/10.1002/advs.201900848
pmid: 31406677
X Cui, X Han, L Yu, et al.. Intrinsic chemistry and design principle of ultrasound-responsive nanomedicine. Nano Today, 2019, 28: 100773 https://doi.org/10.1016/j.nantod.2019.100773
85
M Ibrahim, R Sabouni, G A Husseini, et al.. Facile ultrasound-triggered release of calcein and doxorubicin from iron-based metal-organic frameworks. Journal of Biomedical Nanotechno-logy, 2020, 16(9): 1359–1369 https://doi.org/10.1166/jbn.2020.2972
pmid: 33419490
86
Y Zhou, M Wang, Z Dai. The molecular design of and challenges relating to sensitizers for cancer sonodynamic therapy. Materials Chemistry Frontiers, 2020, 4(8): 2223–2234 https://doi.org/10.1039/D0QM00232A
87
C Huang, S Ding, W Jiang, et al.. Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy. Nano-scale, 2021, 13(8): 4512–4518 https://doi.org/10.1039/D0NR08440A
pmid: 33615325
88
X Pan, W Wang, Z Huang, et al.. MOF-derived double-layer hollow nanoparticles with oxygen generation ability for multimodal imaging-guided sonodynamic therapy. Angewandte Chemie International Edition, 2020, 59(32): 13557–13561 https://doi.org/10.1002/anie.202004894
pmid: 32374941
89
X Ke, X Song, N Qin, et al.. Rational synthesis of magnetic Fe3O4@MOF nanoparticles for sustained drug delivery. Journal of Porous Materials, 2019, 26(3): 813–818 https://doi.org/10.1007/s10934-018-0682-4
90
M Aghayi-Anaraki, V Safarifard. Fe3O4@MOF magnetic nanocomposites: Synthesis and applications. European Journal of Inorganic Chemistry, 2020, 2020(20): 1916–1937 https://doi.org/10.1002/ejic.202000012
91
Z Xiang, Y Qi, Y Lu, et al.. MOF-derived novel porous Fe3O4@C nanocomposites as smart nanomedical platforms for combined cancer therapy: Magnetic-triggered synergistic hyperthermia and chemotherapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2020, 8(37): 8671–8683 https://doi.org/10.1039/D0TB01021A
pmid: 32856668
92
R Lin, W Yu, X Chen, et al.. Self-propelled micro/nanomotors for tumor targeting delivery and therapy. Advanced Healthcare Materials, 2021, 10(1): 2001212 https://doi.org/10.1002/adhm.202001212
pmid: 32975892
93
J Xu, S S Lee, H Seo, et al.. Quinic acid-conjugated nanoparticles enhance drug delivery to solid tumors via interactions with endothelial selectins. Small, 2018, 14(50): 1803601 https://doi.org/10.1002/smll.201803601
pmid: 30411856
94
J Park, Y Choi, H Chang, et al.. Alliance with EPR effect: Combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics, 2019, 9(26): 8073–8090 https://doi.org/10.7150/thno.37198
pmid: 31754382
95
T Xue, C Xu, Y Wang, et al.. Doxorubicin-loaded nanoscale metal-organic framework for tumor-targeting combined chemotherapy and chemodynamic therapy. Biomaterials Science, 2019, 7(11): 4615–4623 https://doi.org/10.1039/C9BM01044K
pmid: 31441464
96
P Liu, Y Zhou, X Shi, et al.. A cyclic nano-reactor achieving enhanced photodynamic tumor therapy by reversing multiple resistances. Journal of Nanobiotechnology, 2021, 19(1): 149 https://doi.org/10.1186/s12951-021-00893-6
pmid: 34020663
97
J Yan, C Liu, Q Wu, et al.. Mineralization of pH-sensitive doxorubicin prodrug in ZIF-8 to enable targeted delivery to solid tumors. Analytical Chemistry, 2020, 92(16): 11453–11461 https://doi.org/10.1021/acs.analchem.0c02599
pmid: 32664723
98
W Xu, Y Lou, W Chen, et al.. Folic acid decorated metal-organic frameworks loaded with doxorubicin for tumor-targeted chemotherapy of osteosarcoma. Biomedical Engineerin/Biomedizinische Technik, 2020, 65(2): 229–236 https://doi.org/10.1515/bmt-2019-0056
99
A Samui, K Pal, P Karmakar, et al.. In situ synthesized lactobionic acid conjugated NMOFs, a smart material for imaging and targeted drug delivery in hepatocellular carcinoma. Materials Science and Engineering C, 2019, 98: 772–781 https://doi.org/10.1016/j.msec.2019.01.032
pmid: 30813083
100
H Zhang, Q Zhang, C Liu, et al.. Preparation of a one-dimensional nanorod/metal organic framework Janus nanoplatform via side-specific growth for synergistic cancer therapy. Biomaterials Science, 2019, 7(4): 1696–1704 https://doi.org/10.1039/C8BM01591K
pmid: 30747179
101
Y He, T Xiong, S He, et al.. Pulmonary targeting crosslinked cyclodextrin metal-organic frameworks for lung cancer therapy. Advanced Functional Materials, 2021, 31(3): 2004550 https://doi.org/10.1002/adfm.202004550
102
Y Zhang, L Lin, L Liu, et al.. Positive feedback nanoamplifier responded to tumor microenvironments for self-enhanced tumor imaging and therapy. Biomaterials, 2019, 216: 119255–119263 https://doi.org/10.1016/j.biomaterials.2019.119255
pmid: 31229855
103
K Kim, S Lee, E Jin, et al.. MOF × biopolymer: Collaborative combination of metal-organic framework and biopolymer for advanced anticancer therapy. ACS Applied Materials & Interfaces, 2019, 11(31): 27512–27520 https://doi.org/10.1021/acsami.9b05736
pmid: 31293157
104
M Wu, X Liu, H Bai, et al.. Surface-layer protein-enhanced immunotherapy based on cell membrane-coated nanoparticles for the effective inhibition of tumor growth and metastasis. ACS Applied Materials & Interfaces, 2019, 11(10): 9850–9859 https://doi.org/10.1021/acsami.9b00294
pmid: 30788951
105
Z Chai, X Hu, W Lu. Cell membrane-coated nanoparticles for tumor-targeted drug delivery. Science China Materials, 2017, 60(6): 504–510 https://doi.org/10.1007/s40843-016-5163-4
106
X Wan, L Song, W Pan, et al.. Tumor-targeted cascade nanoreactor based on metal-organic frameworks for synergistic ferroptosis-starvation anticancer therapy. ACS Nano, 2020, 14(9): 11017–11028 https://doi.org/10.1021/acsnano.9b07789
pmid: 32786253
J Liu, Z Liu, D Wu. Multifunctional hypoxia imaging nanoparticles: multifunctional tumor imaging and related guided tumor therapy. International Journal of Nanomedicine, 2019, 14: 707–719 https://doi.org/10.2147/IJN.S192048
pmid: 30705587
109
J Sun, J Wang, W Hu, et al.. Camouflaged gold nanodendrites enable synergistic photodynamic therapy and NIR biowindow II photothermal therapy and multimodal imaging. ACS Applied Materials & Interfaces, 2021, 13(9): 10778–10795 https://doi.org/10.1021/acsami.1c01238
pmid: 33646767
110
Z Ouyang, D Li, Z Xiong, et al.. Antifouling dendrimer-entrapped copper sulfide nanoparticles enable photoacoustic imaging-guided targeted combination therapy of tumors and tumor metastasis. ACS Applied Materials & Interfaces, 2021, 13(5): 6069–6080 https://doi.org/10.1021/acsami.0c21620
pmid: 33501834
111
G Zhou, Y S Wang, Z Jin, et al.. Porphyrin-palladium hydride MOF nanoparticles for tumor-targeting photoacoustic imaging-guided hydrogenothermal cancer therapy. Nanoscale Horizons, 2019, 4(5): 1185–1193 https://doi.org/10.1039/C9NH00021F
112
Y Wang, W Wu, D Mao, et al.. Metal-organic framework assisted and tumor microenvironment modulated synergistic image-guided photo-chemo therapy. Advanced Functional Materials, 2020, 30(28): 2002431 https://doi.org/10.1002/adfm.202002431
113
Y Chen, Z H Li, P Pan, et al.. Tumor-microenvironment-triggered ion exchange of a metal-organic framework hybrid for multimodal imaging and synergistic therapy of tumors. Advanced Materials, 2020, 32(24): 2001452 https://doi.org/10.1002/adma.202001452
pmid: 32374492
114
M Peller, K Böll, A Zimpel, et al.. Metal-organic framework nanoparticles for magnetic resonance imaging. Inorganic Che-mistry Frontiers, 2018, 5(8): 1760–1779 https://doi.org/10.1039/C8QI00149A
115
S M McLeod, L Robison, G Parigi, et al.. Maximizing magnetic resonance contrast in Gd(III) nanoconjugates: Investigation of proton relaxation in zirconium metal-organic frameworks. ACS Applied Materials & Interfaces, 2020, 12(37): 41157–41166 https://doi.org/10.1021/acsami.0c13571
pmid: 32852198
116
J Yao, Y Liu, J Wang, et al.. On-demand CO release for amplification of chemotherapy by MOF functionalized magnetic carbon nanoparticles with NIR irradiation. Biomaterials, 2019, 195: 51–62 https://doi.org/10.1016/j.biomaterials.2018.12.029
pmid: 30610993
117
A Ebrahimpour, N Riahi Alam, P Abdolmaleki, et al.. Magnetic metal-organic framework based on zinc and 5-aminolevulinic acid: MR imaging and brain tumor therapy. Journal of Inorganic and Organometallic Polymers and Materials, 2021, 31(3): 1208–1216 https://doi.org/10.1007/s10904-020-01782-5
118
H Zhou, M Qi, J Shao, et al.. Manganese oxide/metal-organic frameworks-based nanocomposites for tumr micro-environment sensitive 1H/19F dual-mode magnetic resonance imaging in vivo. Journal of Organometallic Chemistry, 2021, 933: 121652 https://doi.org/10.1016/j.jorganchem.2020.121652
119
C Guo, S Xu, A Arshad, et al.. A pH-responsive nanoprobe for turn-on 19F-magnetic resonance imaging. Chemical Communications, 2018, 54(70): 9853–9856 https://doi.org/10.1039/C8CC06129G
pmid: 30112535
120
W Zhu, M Chen, Y Liu, et al.. A dual factor activated metal-organic framework hybrid nanoplatform for photoacoustic imaging and synergetic photo-chemotherapy. Nanoscale, 2019, 11(43): 20630–20637 https://doi.org/10.1039/C9NR06349H
pmid: 31641722
121
Y Pu, Y Zhu, Z Qiao, et al.. A Gd-doped polydopamine (PDA)-based theranostic nanoplatform as a strong MR/PA dual-modal imaging agent for PTT/PDT synergistic therapy. Journal of Materials Chemistry B: Materials for Biology and Medicine, 2021, 9(7): 1846–1857 https://doi.org/10.1039/D0TB02725A
pmid: 33527969
122
S S Wan, Q Cheng, X Zeng, et al.. A Mn(III)-sealed metal-organic framework nanosystem for redox-unlocked tumor theranostics. ACS Nano, 2019, 13(6): 6561–6571 https://doi.org/10.1021/acsnano.9b00300
pmid: 31136707
123
Y Zhu, N Xin, Z Qiao, et al.. Bioactive MOFs based theranostic agent for highly effective combination of multimodal imaging and chemo-phototherapy. Advanced Healthcare Materials, 2020, 9(14): 2000205 https://doi.org/10.1002/adhm.202000205
pmid: 32548979
124
W Cai, H Gao, C Chu, et al.. Engineering phototheranostic nanoscale metal-organic frameworks for multimodal imaging-guided cancer therapy. ACS Applied Materials & Interfaces, 2017, 9(3): 2040–2051 https://doi.org/10.1021/acsami.6b11579
pmid: 28032505
125
X Sun, G He, C Xiong, et al.. One-pot fabrication of hollow porphyrinic MOF nanoparticles with ultrahigh drug loading toward controlled delivery and synergistic cancer therapy. ACS Applied Materials & Interfaces, 2021, 13(3): 3679–3693 https://doi.org/10.1021/acsami.0c20617
pmid: 33464038